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ABSTRACT

The quantum critical detector (QCD), recently introduced for weak signal amplification [L.-P. Yang and Z. Jacob, Opt. Express 27, 10482
(2019)], functions by exploiting high sensitivity near the phase transition point of first-order quantum phase transitions (QPTs). We con-
trast the behavior of the first-order and the second-order quantum phase transitions in the detector. We find that the giant sensitivity,
which can be utilized for quantum amplification, only exists in the first-order QPTs. We define two new magnetic order parameters to
quantitatively characterize the first-order QPT of the interacting spins in the detector. We also introduce the Husimi Q-functions as a pow-
erful tool to show the fundamental change in the ground-state wave function of the detector during the QPTs, especially the intrinsic
dynamical change within the detector during a quantum critical amplification. We explicitly show the high figures of merit of the QCD via
the quantum gain and the signal-to-quantum noise ratio. Specifically, we predict the existence of a universal first-order QPT in the interact-
ing-spin system resulting from two competing ferromagnetic orders. Our results motivate new designs of weak signal detectors by engineer-
ing first-order QPTs, which are of fundamental significance in the search for new particles, quantum metrology, and information science.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5121558

I. INTRODUCTION

Detection of weak quantum signals is central to precision
metrology,1,2 search for new fundamental particles,3 studying gravita-
tional effects,4 and quantum information science.5,6 An early
example of a weak signal detector is the bubble chamber for charged
particle detection in high-energy physics experiments.7 Here, super-
heated liquid vaporizes into gas bubbles, which traces out the path of
the charged particle. Another more recent example of a quantum
detector is the superconducting nanowire single-photon detector
(SNSPD).8 Here, a single photon causes a click event in a critically
biased superconductor by inducing a phase change to the normal
conducting state. The common theme between these two detection
mechanisms is a weak signal inducing a thermodynamic phase tran-
sition. This concept recently inspired a new class of detectors that
function by a weak signal triggering a quantum phase transition
(QPT). To emphasize the need for a critical biasing field and a
quantum (as opposed to classical) phase transition, we address this
device as the quantum critical detector (QCD).9

The word “critical” in QCDs is used to emphasize the need
for a critical biasing signal, which is not required in widely utilized

quantum linear amplifiers. The philosophy of operation is similar
to a conventional single-photon triggered avalanche process where
a weak signal (i.e., single-photon pulse) triggers an avalanche in an
optimally biased system leading to a large number of electron hole
pairs. The key difference is the readout mechanism (amplification)
in the QCD, which is not an avalanche but is related to the phase
transition that causes a macroscopic excitation in a single bosonic
output mode or an abrupt change in the long-range order of spins.
The concept of a “click” or single-shot quantum detection event is
related to the nonanalyticity that occurs near the phase transition
point as a parameter in the detector is perturbed. QCDs necessarily
require a first-order phase transition to ensure a giant change in
macroscopic observables arising from a weak perturbing signal.
Our focus is not the critical point of continuous phase transitions,
which have been recently exploited in quantum critical metrology.10

This approach of exploiting first-order QPTs to detect signals in
a single shot is fundamentally different from repeated measurement
schemes, parameter estimation, or quantum sensing/metrology.1,2,11

The readout mechanism in these established schemes is related
to interferometric processes, which can be enhanced through

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 126, 174502 (2019); doi: 10.1063/1.5121558 126, 174502-1

Published under license by AIP Publishing.

https://doi.org/10.1063/1.5121558
https://doi.org/10.1063/1.5121558
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5121558
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5121558&domain=pdf&date_stamp=2019-11-06
http://orcid.org/0000-0002-7266-4901
mailto:zjacob@purdue.edu
http://www.electrodynamics.org/
http://www.electrodynamics.org/
https://doi.org/10.1063/1.5121558
https://aip.scitation.org/journal/jap


engineering quantum states of light12,13 or matter.14 In stark con-
trast, the QCD does not utilize an interferometric readout but
requires a quantum bias that prepares the detector in a predeter-
mined phase close to the phase transition point.9

We also emphasize that the mechanism of quantum critical
amplification is fundamentally different from the well established
concept of quantum linear amplifiers.15,16 In this traditional amplifi-
cation approach, the weak input signal is directly amplified to gener-
ate a large output signal. The information carriers in input and
output signals are usually of the same kind (e.g., bosonic excitations),
and the gain of the amplifier is defined as the output-to-input ratio
of signal amplitudes not particle number. The canonical example is
the quantum linear amplifier, including the phase-preserving (phase
insensitive)17 and parametric (phase-sensitive) amplifiers.18–21 In his
seminal work,16 Caves presented a comprehensive review of the fun-
damental quantum limit for linear amplification under this scheme.
This quantum limit lays a lower bound on the minimum amount of
noise added by a high-gain bosonic quadrature amplifier during
amplification,22,23 which has also been generalized to fermionic
amplifiers.24

In stark contrast, for the phase transition amplification scheme,
the weak input signal functions as a control of an optimally biased
phase transition system, which is significantly different from the
quantum linear amplifiers. In these critically biased amplifiers, the
input and output information carriers can be fundamentally different
(e.g., input photons and output electrons), and the corresponding
gain (i.e., the amplification factor) is defined as the ratio of the
outputs with and without the input control signal. The classical criti-
cal detectors have been extensively used in practical experiments,
such as the SNSPD,8 the single-photon avalanche diode (SPAD),25

etc. The key amplification mechanism in the superconducting detec-
tors is based on the thermodynamic (classical) phase transition trig-
gered by the weak input signal. The QCD falls under this critical
amplification scheme, and it is an open question whether quantum
limits can be placed on this class of critically biased amplifiers.26

In this paper, we show universal detection and amplification
behavior in a class of models exhibiting quantum phase transitions.
We use this to explain the amplification mechanism of a QCD. The
detector model we introduce is closely related to the Dicke model27

and the Lipkin-Meshkov-Glick (LMG) model.28–30 We also intro-
duce two new magnetic order parameters (OPs) to rigorously char-
acterize the first-order QPTs in the detector model. By employing a
mean-field theory as well as full numerics, we generate the com-
plete phase diagram of the detector.

We uncover the first-order QPT in the LMG model, which is
essential for our proposed QCD and has not been revealed in the
previous literature. We find that the first-order QPT is fundamen-
tally tied to the competition between two ferromagnetic phases
with a long-range spin order in the x- and y-axes, respectively. We
also predict that a universal first-order QPT exists in an interacting
spin system with competing ferromagnetic orders.

We also numerically show that, at the first-order phase transi-
tion point of the detector, the sensitivity function χ diverges with
N2-scaling, where N is the spin number. This scaling is much
faster than previous first-order phase transitions31,32 and provides
extraordinary high sensitivity for weak signal detection. To under-
stand the microscopic mechanism of the QPTs, we display the

fundamental changes in the ground-state wave function during the
phase transitions using Husimi Q-functions.

For natural atomic systems, the superradiant QPT in the
Dicke model has been ruled out by the no-go theorem.33,34 Here,
we show explicitly how to overcome this no-go theorem. We show
that the spin-spin (atom-atom) interaction can decrease the strong
atom-field coupling required by the superradiant QPT significantly.
This allows the superradiant QPT to occur.

Our work overcomes challenges in the simulation of quantum
phase transition dynamics with weak signal perturbation. The
dynamical evolution of a system near the phase transition point nec-
essarily involves excited states which can show significant deviations
from the conventional ground-state to ground-state transition behav-
ior. Via direct time-dynamic numerical evaluation, we overcome this
issue. We show the linear scaling in both the maximum quantum
gain and the corresponding signal-to-quantum noise ratio (SQNR),
which reveal high figures of merit of our QCD. We also use the
time-dependent Q-functions to show the macroscopic changes in the
bosonic output mode and the long-range spin order during the
dynamical critical amplification in our QCD. Usually, the enhanced
decay of the Loschmidit echo around the phase transition point is
utilized to measure QPTs.35,36 However, this enhanced echo decay
exists in both first-order and second-order QPTs and only describes
the deviation in the wave function from the initial state during the
QPT. The enhanced quantum gain around the phase transition
point addressed in this paper is a unique and universal characteristic
of first-order QPTs, which captures the fundamental change in the
macroscopic order of the detector.

Our proposed device can be obtained by engineering a multi-
qubit system to exhibit an artificial phase transition. We note that
the simulation of quantum phase transitions has become a major
recent area of interest. Second-order Ising-like QPTs have been
demonstrated in experiments with trapped ions,37 cold atoms,38

and circuit QEDs.39 As QPTs occur at zero temperature, our pro-
posed QCD may have a higher signal-to-noise ratio and a lower
dark counting rate than detectors utilizing thermodynamic phase
transitions.

We also note that the detection of the axion, which is the
prominent dark-matter candidate, is based on measuring single
microwave photons generated from the axion-photon conversion
process.3,40,41 Currently, the efficient detection of propagating
microwave single-photon pulses remains challenging due to the
extremely low energy carried by the pulse.42–44 Our proposed
quantum signal detector based on first-order quantum phase tran-
sitions might pave a new path for microwave-photon counting and
axion detection.

This paper is organized as follows. We first provide a general
introduction to the QCD paradigm in Sec. II. Then, we introduce
the Dicke-LMG model as an explicit detector model to demonstrate
the QCD in Sec. III. In Sec. IV, we establish two new magnetic
order parameters (OPs) to characterize the quantum phases of the
detector and present the complete phase diagram of the detector
obtained from the mean field theory. By splitting the Dicke-LMG
model into three submodels, we study the first-order and second-
order QPTs existing in the full model and the fundamental
changes in the ground-state wave function during the phase transi-
tions in Sec. V. In Sec. VI, we demonstrate the dynamical quantum
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critical amplification in the QCD by exploiting the giant sensitivity
of the first-order QPT. In Sec. VII, we list some possible platforms
to demonstrate our QCD. Finally, we collect our main conclusions
in Sec. VIII. The details of the mean-field theory are given in
Appendix A, and the numerical approach used in this paper is pre-
sented in Appendix B.

II. QUANTUM CRITICAL DETECTOR

In our previous work,9 we proposed a prototype QCD by
exploiting the giant sensitivity in a first-order QPT. Our QCD is
inspired by the routinely used classical critical detectors, such as
the SNSPD6,8 and the bubble chamber.7 The amplification of these
classical detectors is based on the ultrahigh sensitivity of the detec-
tor at the phase transition point of the thermodynamic (classical)
phase transitions. Our QCD is the first quantum analog of the clas-
sical critical detectors. In this section, we explain the input signal,
the amplification mechanism, and the macroscopic output signal of
our QCD explicitly. We also explain why first-order QPTs are
essential for quantum critical amplification.

To show the analogy between our proposed QCD with the
conventional detectors, we deconstruct the SNSPD to explain the
amplification scheme in classical critical detectors. The input of
the SNSPD is a single-photon pulse—an extremely weak quantum
signal. The core element of the SNSPD is a superconducting
nanowire with a typical width of 100 nm, a thickness of 8 nm, and
a length of 10 μm.46,47 The current in the superconducting nano-
wire is biased very close to the critical current; thus, even a single-
photon pulse can break the superconductivity.48 The output
signal is the voltage difference between the two ends of the super-
conducting nanowire. In the transduction (absorption) process,
the incident single-photon pulse generates one resonantly excited
electron. As the center frequency of the pulse is much larger
than the energy gap of the superconductor, this highly excited
electron will break hundreds of Cooper pairs via the strong
electron-electron interaction. Then, the local temperature around
the excited electron increases to form a hot spot. This hot spot
diffuses and reduces the local density of the superconducting elec-
trons within this small hot region. Finally, a phase transition from
a superconductor to a normal metal in this small cross-section
slab occurs and blocks the superconducting current in the nano-
wire. An observable output voltage pulse is generated to realize
the amplification. Here, we see that the high sensitivity in the
superconducting phase transition and the critical bias current
play the key roles in weak quantum signal amplification.

Next, we show the analogy between a QCD and the SNSPD
and explain the macroscopic output signal of our proposed detector.

A. Quantum critical amplification scheme

The full measurement in our QCD is split into two main
processes: transduction (absorption) and amplification. In our pro-
posed QCD, absorption of the incident weak signal leads to a small
time-dependent variation in a relevant parameter of the detector
system instead of the temperature. The amplification is realized by
the QPT triggered by this parameter variation, in contrast to the
thermodynamic phase transition triggered by the temperature
change in an SNSPD.

The input signal of our QCD can be an arbitrary quantum
weak signal, such as a single-photon pulse. After absorption of this
input signal, a small time-dependent variation in the detector
parameter is generated. Similar to the classical critical detectors, we
also need to bias our QCD very close to the phase transition point
to guarantee that this small parameter variation can cross the phase
boundary to trigger a QPT. As explained later, when a first-order
QPT occurs, a large output change can be obtained to complete the
amplification. We see that the amplification scheme in the QCD is
the same as the classical critical detector by only replacing the
thermodynamic phase transition with a QPT.

In practice, we can engineer and select which parameter of
the detector to be changed by the input signal. One example is the
interaction strength within the detector, e.g., the spin-boson cou-
pling or spin-spin coupling shown in this paper. It can also be a
small effective magnetic field change coming from the magnetic
dipole of the absorber, such as a nitrogen-vacancy center.49 The
dynamics of the absorption of a quantum pulse can be theoretically
incorporated into the dynamical quantum critical amplifica-
tion.50,51 Without loss of generality, we model the transduction
(absorption) process as a temporal change in the detector parame-
ter, which is assumed to be proportional to the input signal absorp-
tion probability for simplicity. For a specific realization of the
QCD, the transduction process can be numerically simulated via
the quantum pulse scattering theory.51,52

B. Macroscopic output signal

The output amplified signal of a QCD is the macroscopic
change in one of the OPs. One simple example demonstrated in
this paper is the superradiant OP, i.e., the macroscopic excitation in
a single bosonic mode. Before the absorption of the incident weak
signal, the detector is biased in the ground state of the phase, in
which the bosonic mode is in the vacuum state. Finally, the
bosonic mode evolves to a state with macroscopic excitations after
the first-order QPT is triggered by the input signal. The macro-
scopic population in the bosonic mode can be readout via a classi-
cal device directly.

The detector model as well as the corresponding readout
channel presented in this paper is only one explicit example to
show the amplification mechanism of the QCD. In practice, we can
engineer the QPTs, readout channel, especially the interaction
between the detector and the input signal to detect different kinds
of particles, such as photons, charged particles, axions, etc.
Another output signal of the prototype QCD in this paper could be
the magnetic noise change, i.e., read out the in-plane magnetic
fluctuations of spins with spin noise spectroscopy.53

C. Essential role of the first-order quantum phase
transition

Now, we explain why first-order QPTs are essential for QCDs.
A QPT describes an abrupt change in the ground state of a many-
body system at zero temperature.45 Most of the QPTs discovered in
physical systems are of second-order, like the QPTs in the Ising
model,54 the Hubbard model,55,56 the Bose-Hubbard model,57 the
LMG model,28–30 the Dicke model,27,58–60 etc. Here, we emphasize
that first-order instead of second-order QPTs are required for
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quantum critical amplification. We compare the differences
between first- and second-order QPTs schematically in Fig. 1.
From panel (a), we see that the order parameter in second-order
(or higher-order) QPTs changes continuously at the phase transi-
tion point λc. No macroscopic change in the OPs, which functions
as the output signal of a QCD, exists during a second-order QPT.
Even at the phase transition point, a large parameter variation is
required to obtain an observable change in the system. This large
parameter variation cannot be induced by a weak input signal, such
as a single-photon pulse. Thus, a high quantum gain cannot be
obtained using second-order QPTs, which limits their practical
applicability for weak signal amplification. In contrast to the con-
tinuous phase transitions, the order parameter changes discontinu-
ously at the phase transition point in a first-order QPT. Thus, even
a very small parameter change at the phase transition can lead to a
significantly large change in the values of the OP (the output
signal). This elucidates the great potential of first-order QPTs for
high-gain amplifiers.

To characterize the sensitivity of a phase transition system, we
defined a sensitivity function as the first derivative of the order
parameter. From panel (b), we see that a nonanalytical “kink”
exists in the sensitivity function of both first- and second-order
QPTs. However, the height of the sensitivity function at the
first-order QPT point, which diverges in the thermodynamic limit,
is much higher than that of a second-order QPT with a finite peak.
Thus, first-order QPTs can have a much higher sensitivity and
provide a natural platform for quantum metrology,1,11 quantum
amplification,16 and new types of single-photon detectors.6 We
note that, originally, the critical point has been specifically used to
denote the point where a continuous thermodynamic phase transi-
tion occurs. Thus, the concept of the quantum critical point and
quantum criticality is traditionally used only for continuous
quantum phase transitions.45 To avoid confusions in the interpreta-
tion of “critical” for discontinuous QPTs in the detector context vs
the concept of “critical” in the continuous QPT context, we denote
the optimum bias point of the detector as the phase transition
point hereafter. It should, however, be noted that, even at the dis-
continuous first-order QPT point, the free energy and entropy still
change continuously with temperature.

We also emphasize that the discontinuous jump and the
diverging sensitivity in first-order QPTs result from a macroscopic
order change in the ground states of two neighboring quantum
phases. Due to the vanishing energy gap at the phase transition
point, the transition between the ground states of two quantum
phases cannot be realized by a unitary adiabatic operation.61

By varying a parameter across the phase transition point with time,
one cannot induce a QPT from one ground state to the other in
practice. Thus, a dynamical detection event may have totally a
different sensitivity scaling. A few first-order QPTs have already
been found, like the Dicke-Ising model,31,62,63 the antiferromagnetic
Ising chain,64–66 the LMG model in the zero-field limit,67 the
quantum Ising model with a four-spin exchange interaction,68 etc.
Nevertheless, the dynamics of these QPTs around the phase transi-
tion point has not been revealed. The application of these first-order
QPTs is, therefore, an open problem, as practical detection events
and amplifications are fundamentally dynamical processes.

In the following, we will present our prototype QCD in detail.
First, we introduce the model Hamiltonian of our QCD. Via the
mean-field theory, we derive the complete phase diagram of the
detector. We also show the details of the QPTs within the detector
with numerical simulations, specifically the fundamental change in
the ground-state wave function. Finally, we display the dynamical
change in the OPs and the wave function of the detector to show
the quantum critical amplification process within the detector.

III. MODEL HAMILTONIAN FOR THE QUANTUM
CRITICAL DETECTOR

In our previous work,9 we introduced a first-order QPT
model, which is the underlying reason for amplification in the
QCD. This model is composed of a bosonic mode and a spin
ensemble with a homogeneous long-range dipole-dipole interaction
along only one direction (y-direction). Here, we extend this model
to a more general case with three-dimensional homogeneous cou-
plings (see Fig. 2),

H ¼ d̂yd̂ þ λffiffiffiffi
N
p

XN
j¼1

σ̂x
j(d̂ þ d̂y)þ ϵ

2

XN
j¼1

σ̂z
j �
XN
j,k

X
α

~Jα
N
σ̂α

j σ̂
α
k : (1)

Here, d̂(d̂y) denotes the output bosonic mode. Its frequency has
been taken as the unit of the energy ω0 ¼ 1, and all the other
parameters in the Hamiltonian have been rescaled by ω0. The oper-
ators σ̂α

j (α ¼ x, y, z) are the Pauli matrices of the jth spin. A mag-
netic field is applied along the z-direction inducing an energy
splitting ϵ between spin states "j i j and #j i j. The coupling between
the bosonic mode and the spin ensemble is along the x-direction
with homogeneous coupling strength λ. The last term characterizes
the all-to-all homogeneous dipolar coupling ~Jα between the spins,
which is significantly different from the nearest-neighbor coupling
in the traditional Ising models.45

After defining the collective angular momentum operators of
the N spins

Ŝα ¼ 1
2

XN
j¼1

σ̂α
j , α ¼ x, y, z, (2)

FIG. 1. Schematics of the difference between first- and second-order quantum
phase transitions with the order parameter (OP) in panel (a) and the sensitivity
characterized by the first derivative of the order parameter (dOP=dλ) in panel
(b). Here, λc denotes the phase transition points.
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we re-express our model Hamiltonian as

Ĥ ¼ d̂yd̂ þ 2λffiffiffiffi
N
p Ŝx(d̂ þ d̂y)þ ϵŜz � 2

N
(JxŜ

2
x þ JyŜ

2
y): (3)

Here, we have used the angular momentum conservation relation
Ŝ2x þ Ŝ2y þ Ŝ2z ¼ N(2N þ 1)=4 and defined the new homogeneous
dipolar coupling strength Jx ¼ ~Jx � ~Jz and Jy ¼ ~Jy � ~Jz . Since the
total angular momentum of the spins is conserved, we can perform
the calculation in a subspace spanned by the Dicke states.69 Then,
the N-spin ensemble is now equivalent to a single particle with
spin-N=2. For simplicity, we only consider the case of ferromag-
netic coupling and all the parameters in the Hamiltonian (3) are
positive real numbers. The rich physics of the antiferromagnetic
coupling model (with negative dipolar coupling Jx and/or Jy) will
not be present in this paper. The first three terms compose the tra-
ditional Dicke model without the rotating-wave approximation,69

and the last three terms form the well-known LMG model.28–30

Hence, we call this model the Dicke-LMG model.
Our detector model (3) is not a simple combination of the

Dicke model and the LMG model. New quantum phases and
new QPTs, especially a first-order QPT, emerge in this model.
For second-order QPTs, substantial changes occur only in the
ground-state wave function, which makes it extremely hard to
detect the criticality.70,71 Specifically, single-shot deterministic
readout is required for pulse signal detection instead of multiple
repetitive probabilistic measurements. However, for first-order QPTs,
discontinuous changes exist in directly measurable quantities at the
phase transition point, which makes the quantum singularity signifi-
cantly more detectable. Thus, first-order QPTs in a many-body
system are of fundamental interest and possess much more applica-
tion potential in quantum metrology and quantum detection.

In the traditional Dicke model,69 a second-order superradiant
QPT occurs when the spin-boson coupling exceeds the QPT point
λc,II ;

ffiffiffi
ϵ
p

=2.27,58–60,72 However, this superradiant QPT will be
forbidden by the Thomas-Reiche-Kuhn (TRK) sum rule in a
natural-atom system33,34 or an artificial qubit system.73 However,
this problem is easily overcome in our model with the help of the
dipolar interaction Jx along the x-axis.

In the LMG model, second-order magnetic QPTs between the
paramagnetic phase and the ferromagnetic phase have been
found.28–30 In 2004, Vidal et al. show the existence of a first-order
QPT in the LMG model in the zero-magnetic-field limit ϵ! 0.67

However, in this paper, we will show that the first-order QPT exists
even for the finite magnetic field (ϵ = 0) case. This first-order
QPT results from the competition between two ferromagnetic
phases and can be exploited for quantum amplification. In the pre-
vious literature, this first-order QPT has not been revealed because
the traditional magnetic OP (the mean magnetization of the spins)
is selected. In the following, we will show that this magnetic OP
cannot characterize the first-order QPT and we will introduce two
new magnetic OPs to characterize the quantum phases in our
model and to demonstrate the corresponding QPTs.

IV. PHASE DIAGRAM OF DETECTOR VIA MEAN-FIELD
THEORY

The key element of our QCD is the first-order-QPT-based
quantum amplification. To utilize a QPT system as a novel amplifi-
cation source, one first needs a clear phase diagram and the explicit
boundaries between the quantum phases of a system. In this
section, we introduce two magnetic OPs to characterize the
first-order QPT of the interacting spin system. Then, we present
the complete phase diagram of the Dicke-LMG model (3), which is
obtained by employing a mean-field theory.

A. Order parameters

In different phases, matter usually has different long-range
orders. Thus, an OP is utilized to measure the degree of order in a
phase transition system, such as the density change in solid-liquid-
gas transitions. The OPs normally range between zero in one phase
and nonzero in the other.

To characterize the first-order magnetic QPTs, we now intro-
duce two new magnetic OPs,

ζM,x ;
hŜ2xi0
N2

(4)

and

ζM,y ;
hŜ2yi0
N2

: (5)

In the ground state of the paramagnetic phase, all the spins are
polarized along the negative z-axis, i.e., j ####iz . In this state, the
mean values of these magnetic OPs are zero. When the system goes
to the ferromagnetic phase, the magnetic OPs increase from zero to
a finite value due to the macroscopic polarization of spins in the
xy-plane.

FIG. 2. Schematic of our proposed quantum critical detector (QCD). The
bosonic mode (resonant cavity d̂-mode) with a frequency of ω0 ¼ 1 is the
output mode. The spins are immersed in a homogeneous magnetic field along
the z-axis inducing an energy splitting ϵ. The spin-boson coupling λ is in the
x-direction and the all-to-all spin-spin coupling J is in the xy-plane. The input
weak signal leads to a small time-dependent variation in spin-boson coupling
λ(t) (or the spin-spin coupling) and triggers a first-order quantum phase transi-
tion if the system is optimally biased around the phase transition point. The
energy prestored in the spins is transferred to the bosonic mode and realizes
the amplification in our QCD.
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These two magnetic OPs actually characterize the spin fluctua-
tions in the xy-plane,

ζM,x ¼
1
N2

(ΔSx)
2 ;

1
N2

(hŜ2xi0 � hŜxi20) (6)

and

ζM,y ¼
1
N2

(ΔSy)
2 ;

1
N2

(hŜ2yi0 � hŜyi20): (7)

Here, we have used the fact that the mean magnetizations in the xy
plane Mx ; hŜxi0=N and My ; hŜyi0=N are zero in the ferromag-
netic phases. Because the two degenerate ground states j !!! � � �i
and j    � � �i have opposite polarizations.45,74,75 The change in
the transverse magnetic fluctuations during a magnetic QPT can be
probed experimentally through spin noise spectroscopy.53

The superradiant phase can be well characterized by the
superradiant OP, which is defined as the rescaled excitation
number in the bosonic mode,27,58

ζS ¼
hd̂yd̂i0
N

: (8)

According to the Ginzburg–Landau theory, we should
choose the spontaneous magnetization in the xy-plane (i.e.,ffiffiffiffiffiffiffiffiffi
ζM,x

p
and

ffiffiffiffiffiffiffiffiffi
ζM,y

q
) as the OPs for magnetic phase transition76,77

and the amplitude of the bosonic mode (
ffiffiffiffiffi
ζS

p
) as the OP for the

superradiant phase transition. However, we do not use these tradi-
tional OPs for the following three reasons: (1) we find that the
high-order correlation hŜ2xŜ2yi0 diverges at the first-order magnetic
phase transition point, but hŜxŜyi0 shows no singularity;49 (2) ζM,x
and ζM,y are equivalent to hσ̂x

i σ̂
x
iþ1i0, which is usually selected

as the OP of the Ising spin chain;45 (3) usually, the particle
number of the bosonic mode is measured in the experiment instead
of its amplitude.

Next, we calculate the mean values of these OPs in each
quantum phase via a mean-field theory and then we show the full
phase diagram of the Dicke-LMG model.

B. Mean-field theory

A many-body system with interactions is generally very
difficult to solve exactly. The mean-field theory was invented to
address this problem. In this method, the Hamiltonian is expanded
in terms of the magnitude of fluctuations around the mean of the
operators. The mean-field theory is the zeroth-order expansion of
the Hamiltonian. The minimum of the mean-field value of the
Hamiltonian gives the ground-state energy of the system. The
first-order term will be of scale 1=N , which can be neglected in the
large-N limit for the ground-state problem. Recently, Zhang et al.
presented an elegant mean-field theory to calculate the quantum
phases in a many-body system.66 In this subsection, this method is
exploited for the Dicke-LMG model in (3) to obtain the ground
state of the whole system and the phase boundary between different
quantum phases. We will also verify this mean-field phase diagram
with exact numerical simulation in Sec. V.

The spin-boson coupling in our Hamiltonian (3) functions as
a displacement of the bosonic mode. Therefore, in a mean-field
ground state, the operator d̂ can be replaced with a complex numberffiffiffiffi
N
p

α by assuming that the bosonic mode is a coherent state
j ffiffiffiffiNp αi.78 The ground state of the LMG model in the thermody-
namic limit N ! 1 is proven to be a coherent spin state.79,80 Thus,
it is reasonable to replace the spin operators (σ̂x

j , σ̂
y
j , σ̂

z
j) with a clas-

sical Bloch vector,~n ¼ ( sin θ cosf, sin θ sinf, cos θ).81,82

To be consistent with the mean-field theory, we modified the
definition of the coherent spin state83,84 as

θ, fj i ¼ eiθ(Ŝx sinf�Ŝy cosf) N=2, N=2j i: (9)

Thus, the angle θ is identical to the polar angle of a spherical coor-
dinate. Here, N=2, N=2j i is the Dicke state with all spins in the up
state "j iz . In the following, we denote the ground state of the whole
system as j ffiffiffiffiNp αi � θ, fj i, i.e., the direct product of a bosonic
coherent state j ffiffiffiffiNp αi and a coherent spin state θ, fj i.

The scaled ground-state energy E(α, θ, f) ¼ hHi0=N is
given by

E(α, α*, θ, f) ¼ jαj2 þ ϵ

2
cos θ þ λ(α þ α*) sin θ cosf

� Jx
2
sin2 θ cos2 f� Jy

2
sin2 θ sin2 f, (10)

where a constant has been neglected. To minimize the ground-state
energy, we need to set the first derivatives of E with respect to α,
α*, θ, and f to zero. Since all the parameters in Hamiltonian (3)
are assumed to be positive, it is easy to verify that, in the ground
state, the amplitude of the bosonic mode should be real, i.e.,
Im α ¼ 0. Then, minimization conditions give the following equi-
librium constraints:

@

@α
E ¼ 2α þ 2λ sin θ cosf ¼ 0, (11)

@

@θ
E ¼ � ϵ

2
sin θ þ 2λα cos θ cosf

� (Jx cos
2 fþ Jy sin

2 f) sin θ cos θ ¼ 0, (12)

@

@f
E ¼ �2λα sin θ sinfþ (Jx � Jy) sin

2 θ sinf cosf ¼ 0, (13)

where θ [ [0, π] and f [ [0, 2π). To guarantee that the mini-
mums of E(α, θ, f) are obtained, one needs to calculate the second
derivatives. The ground-state stability is determined by a 3� 3
Hessian matrix

M ¼
@2E
@α2

@2E
@α@θ

@2E
@α@f

@2E
@θ@α

@2E
@θ2

@2E
@θ@f

@2E
@f@α

@2E
@f@θ

@2E
@f2

2
664

3
775: (14)

The ground states are stable only if M is positive definite, i.e., all
eigenvalues of M are non-negative.
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We now construct the phase diagram with the help of the
three OPs we defined

ζS ¼
hâyâi0
N
¼ λ2 sin2 θ cos2 f, (15)

ζM,x ¼
hŜ2xi0
N2
¼ 1

4
sin2 θ cos2 f, (16)

ζM,y ¼
hŜ2yi0
N2
¼ 1

4
sin2 θ sin2 f: (17)

The magnetization in the z-direction can also be calculated easily

Mz ¼ hŜzi0N
¼ 1

2
cos θ: (18)

According to the values of the OPs, we find three quantum phases
in the Dicke-LMG model: paramagnetic-normal (PN) phase,
ferromagnetic-normal (FN) phase, and ferromagnetic-superradiant
(FS) phase. In Table I, we list the stability conditions (phase
boundaries), ground states, and the mean value of the three OPs on
the ground state of each phase. More details can be found in
Appendix A. We emphasize that the first-order magnetic QPT can
be properly characterized only by the two magnetic OPs we
introduced.

To clearly reveal the relationship between these quantum
phases, we display the phase diagram of the Dicke-LMG model in
Fig. 3. In panel (a), we plot the phase diagram in the (2λ2 þ Jx , Jy)
plane and also show the ground state of each phase. The bound-
aries between the three quantum phases are depicted by the
blue, green, and red lines. There exists a unique triple-point
(2λ2 þ Jx ¼ ϵ=2, Jy ¼ ϵ=2), where the three lines intersect. A
second-order QPT from the PN phase to the FN phase occurs
when increasing the spin-spin coupling Jy across the blue line
Jy ¼ ϵ=2. The magnetic OP ζM,y changes from 0 to a finite value
continuously after the QPT. A second-order QPT from the PN
phase to the FS phase happens when increasing the spin-boson
coupling λ (or spin-spin coupling Jx) across the green line
2λ2 þ Jx ¼ ϵ=2. Both the superradiant OPs (ζS) and the magnetic
OP (ζM,x) change from 0 to a finite value continuously during
this QPT. Particularly, the QPT from the FN phase to the FS
phase, crossing the red line 2λ2 þ Jx ¼ Jy , is of a first-order transi-
tion. This occurs in the strong-coupling region when both the

x-direction coupling 2λ2 þ Jx . ϵ=2 and the y-direction coupling
Jy . ϵ=2 exceed the second-order QPT points. The OP ζM,y sud-
denly drops from a finite value to zero and, at the same time,
both ζS and ζM,x discontinuously jump from zero to finite values.
This first-order QPT plays a crucial role in quantum amplifica-
tion of our QCD.

We emphasize that the first-order QPT in our detector model
fundamentally results from the competition between two ferromag-
netic phases. To clarify this, we draw the same phase diagram in
the (2λ2 þ Jx , ϵ)-plane in panel (b). As the ϵ-axis is parallel to the
first-order QPT boundary (the red line), the first-order QPT will
not happen if we only vary the magnetic field strength ϵ. We can
also verify that the first-order phase transition represented in the
previous Dicke-Ising model62 has the same origin as the one we
addressed here. We predict that there is a universal first-order QPT
in interacting spin systems from the nearest-neighbor short-range
coupling to the all-to-all long-range coupling,

Ĥ ¼ 1
2
ϵ
X
j

σ̂z
j �

1
n

X
hi,ji

(Jxσ̂
x
i σ̂

x
j þ Jyσ̂

y
i σ̂

y
j ), (19)

where hi , ji run for the n nearest neighbors and n ¼ 1 for the
Ising XY model and n ¼ (N � 1) � N for the LMG model. The

TABLE I. A summary of stability conditions, the ground states, and the mean value of the order parameters in different quantum phases. State j ffiffiffiNp αi � θ, fj i denotes the
tensor product of the bosonic coherent state and a coherent spin state. Ferromagnetic phases have two degenerate states with different azimuth angle f0 and the ground
state in this phase can be any superposition of these two degenerate ground states.

Stability conditions Ground states j ffiffiffiffiNp αi � θ, fj i ζM,x ¼ hŜ2xi=N2 ζM,y ¼ hŜ2yi=N2 ζS ¼ hd̂yd̂i=N
PN phase ϵ > 4λ2 + 2Jx, ϵ > 2Jy |0〉|0, f0〉 0 0 0
FN phase Jy > ϵ/2, Jy > 2λ

2 + Jx |0〉|θ0, f0〉, f0 ¼ π
2 ,

3π
2 0 1

4 (1� ϵ2

4J2y
) 0

FS phase 4λ2 + 2Jx > ϵ, 2λ
2 + Jx > Jy j � ffiffiffiffi

N
p

α0eif0i θ0, f0j i, f0 = 0, π 1
4 1� ϵ2

(4λ2þ2Jx)2
h i

0 λ2 1� ϵ2

(4λ2þ2Jx)2
h i

FIG. 3. Phase diagram of the Dicke-LMG model and the ground state in each
phase. In panel (a), we plot the phase diagram in the (2λ2 þ Jx , Jy ) plane. A
second-order phase transition from the PN phase to the FN phase occurs when
increasing the spin-spin coupling Jy to cross the blue line Jy ¼ ϵ/2. A second-
order phase transition from the PN phase to the FS phase happens when
increasing the spin-boson coupling λ or spin-spin coupling Jx to cross the green
line 4λ2 þ Jx ¼ ϵ. In the strong-coupling regime with Jy . ϵ=2 and
2λ2 þ Jx . ϵ=2, the QPT between the FN and the FS phases is of the first
order, which of significant interest for quantum amplification. In panel (b), we
show the same phase diagram in the (2λ2 þ Jx , ϵ) plane. This figure shows no
first-order QPT happens if we only vary the magnetic field strength ϵ.
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first-order QPT in this interacting spins model can be verified with
the mean-field theory addressed above.

In Sec. V, we numerically demonstrate all the QPTs existing
in our detector model and display the fundamental changes in
the ground-state wave function during the QPTs with Husimi
Q-functions.

V. QUANTUM PHASE TRANSITIONS AND
GROUND-STATE PROPERTIES OF THE DETECTOR

To reveal the microscopic mechanism of amplification in the
first-order-QPT-based QCD, we first need to understand the
underlying physics of the QPTs in the model, especially the fun-
damental change in the ground state wave function of the system
during the QPTs. In the Dicke-LMG model, QPTs occur at the
boundaries of the phase diagram given in Fig. 3. To deeply
understand all the quantum phases and classify the order of the
QPTs correctly, we split the full model in Eq. (3) into three sub-
models: the LMG model, the Dicke-LMGx model, and the
Dicke-LMGy model. In Secs. V A–V C, we will study these sub-
models separately. We follow a simple recipe, first present the
numerical demonstration of the phase diagram, then show the
details of the QPTs, and finally display the quasiprobability dis-
tribution of the ground states.

A. LMG model

In this subsection, we first consider the simplest submodel—
the LMG model with vanishing spin-boson coupling (λ ¼ 0) in
Hamiltonian (3),

Ĥ ¼ ϵŜz � 2
N
(JxŜ

2
x þ JyŜ

2
y): (20)

The LMG model was first proposed to describe the shape phase
transition in nuclei.28–30 As an exactly solvable QPT model,85–88

the LMG model has attracted significant attention in ground-state
entanglement,67,89 spin squeezing,90,91 criticality detection,92,93

heat-engine efficiency enhancement,94 dynamics of the QPT,95 etc.
However, the first-order QPT in the LMG model has not been fully
revealed due to the improperly selected magnetic OP as the net
magnetization Mz .

67,89 Here, with the help of the magnetic OPs
ζM,x and ζM,y , we introduced in Sec. IV, we numerically show the
first-order QPT as well as the well-understood second-order ones.
Utilizing the Husimi spin Q-function, we also verify that the
ground state of the LMG model is indeed a coherent spin state.

We now show the complete phase diagram of the LMG
model, which has not been revealed in the previous literature. The
phase diagram of the LMG model extracted from the mean-field
theory is displayed in Fig. 4(a), which can also be obtained by
setting λ ¼ 0 in Fig. 3. The LMG model has one paramagnetic
(PM) phase and two ferromagnetic phases (FM-X and FM-Y).
The numerical demonstrations of the phase diagrams are shown in
Figs. 4(b) and 4(c). If both the spin-spin coupling in the x-direction
(Jx , Jxc,II) and the y-direction (Jy , Jyc,II) are below their corre-
sponding phase transition coupling strengths (Jxc,II ; ϵ=2 and
Jyc,II ; ϵ=2), both the two magnetic OPs (ζM,x and ζM,y) are zero,
and thus the spins are in the PM phase. The well-known second-

order QPT from the PM phase to the FM-X (FM-Y) phase occurs
when Jx (Jy) crosses the phase boundary denoted by the green
(blue) line in panel (a). However, in the strong spin-spin coupling
regime with Jx . Jxc,II and Jy . Jyc,II, the sharp changes in the OPs
at the boundary Jx ¼ Jy indicate a first-order QPT, which has not
been revealed in the previous literature. This first-order QPT can
also be verified in experiments by measuring the change in the
magnetic fluctuations along x and y directions. We also plot the
net magnetization in the x-direction in panel (d). With the two
magnetic OPs we introduced, we can easily verify that the aniso-
tropic transition in the Ising XY chain96 is also a first-order QPT.

To reveal the details of the QPTs, we plot the magnetic OPs as
functions of spin-spin coupling Jx for different spin-spin coupling
Jy in Fig. 5. From the red-solid and green-dashed lines in Fig. 5(a),
we can see that second-order QPTs occur at Jxc,II ; ϵ=2 when the
spin-spin coupling along the y-axis is below the phase transition
point Jy � Jyc,II ; ϵ=2. If we fix Jx � Jxc,II ; ϵ=2 but increase Jy
across the phase transition point Jyc,II, similar second-order QPTs
(data not shown) from the PM phase to the FM-Y phase also
occur. In the strong spin-spin coupling case when Jy is larger than
the second-order QPT strength Jy . Jyc,II, a QPT occurs at a
new phase transition point Jxc,I ; Jy [see the blue-dotted line in
Fig. 5(a)], which we verify as the first-order later. In Fig. 5(b), we
show that, only after a first-order QPT occurs, there exists a sudden
drop in the magnetic OP ζM,y at the phase transition point Jxc,I
(blue-dotted line), as the system transitions from the FM-Y phase
to the FM-X phase. Thus, this first-order QPT results from the
competition between the two ferromagnetic phases. In Fig. 5(c), we
show that the first-order QPT cannot be revealed by the traditional
magnetic OP Mz, which changes continuously in both second- and
first-order QPTs.

FIG. 4. The phase diagram of the LMG model is shown in panel (a). The
numerical demonstration of the order parameter ζM,x ¼ hŜ2xi0=N2 is in panel
(b) and the magnetic order parameter ζM,x ¼ hŜ2xi0=N2 is in panel (c). In panel
(d), we show the traditional magnetic order parameter (the mean magnetization)
Mz . Here, the energy splitting of the spins is set as ϵ ¼ 1 and the spin number
in this figure is N ¼ 80.
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To verify the first-order magnetic QPT, we plot the
magnetic OP ζM,x for different spin numbers N but with fixed
Jy ¼ 0:6 . Jyc,II in Fig. 5(d). The slope of ζM,x at the phase transi-
tion point Jxc,I ¼ Jy increases with spin number N . Now, we
define the sensitivity function of the LMG model as the first
derivative of the magnetic OP ζM,x, i.e., the sensitivity,

χ(Jx) ;
dζM,x

dJx
¼ 1

N2

dhŜ2xi0
dJx

: (21)

From Fig. 6(a), we see a very sharp peak located at the first-order
QPT point (the blue-dashed line), which is obtained with strong
spin-spin coupling Jy . Jyc,II. The peaks of the sensitivity func-
tion χ(Jx) for second-order QPTs (red and blue curves) are
much lower than the first-order QPT. The position of the
maximum of χ for second-order QPTs will approach the phase
transition point Jxc,II asymptotically in the thermodynamic limit
N ! 1, but the height converges to a finite value. In Fig. 6(b),
we plot the maximum sensitivity χmax of the first-order QPT for
different spin numbers. We see that χmax diverges with increas-
ing spin number in N2 scaling. Similar N2 scaling will also be
found later for the first-order QPT in the Dicke-LMGy model.

In the last part of this subsection, we shed light on the ground
states of the three quantum phases. In 2005, Dusuel and Vidal
studied the ground states of the LMG model in detail.82 Via the
Holstein-Primakoff transform, they found that, in the thermody-
namic limit N ! 1, the ground state of the LMG model is exactly

a coherent spin state. Here, we numerically verify this result.
Particularly, we show the fundamental changes of the ground-state
wave functions during magnetic QPTs via the spin Husimi
Q-function,97

Q(θ, f) ¼ 2N þ 1
4π

θ, fh jρ̂g θ, fj i, (22)

where ρ̂g is the ground-state density matrix of the spins. To vividly
show the quasiprobability distribution of the ground state wavefunc-
tion, we transfer the spherical coordinates (r, θ, f) to the correspond-
ing Cartesian coordinates (x, y, z). Here, r ¼ Q(θ, f)=max[Q(θ, f)]
is the normalized Q-function, which is extensively used to character-
ize the spin squeezing effect.98

The ground state of the PM phase is the Dicke state
jN=2, � N=2i (i.e., the coherent spin state jθ0, f0i with θ0 ¼ π
and totally undetermined f0). In this state, all the spins are polar-
ized along the negative z-axis. As shown in Fig. 7(a), the corre-
sponding Q-function is a cigarlike structure lying along the
negative z-axis. The cross sections of the Q-function in the xz and
yz planes are displayed in Figs. 7(b) and 7(c), respectively. The red
lines originate from the numerical ground states obtained by
directly diagonalizing the LMG model and the gray lines are the
analytic results of the Dicke state N=2, � N=2j i. The numerical
and analytical results exactly coincide with each other. From this
quasiprobability distribution function, we can also see that the
mean magnetization Mz is a finite negative value, but the two order
parameters ζM,x and ζM,y are negligibly small and approach zero in
the limit N ! 1.

For the FM-X phase, there exist two degenerate ground
states jθ0, 0i and jθ0, πi,82 where the polar angle θ0 is determined
by the parameters of the Hamiltonian as given in Eq. (A14). The
system can be in an arbitrary superposition of these two degenerate
states. Thus, the ensemble mean of the magnetization along the
x-direction hŜxi0 is zero, but the magnetic fluctuations character-
ized by the magnetic OP ζM,x is finite. The numerical simulation
of the Husimi Q-functions of states jθ0, πi, jθ0, 0i, and their sym-
metric quantum superposition jGþi ¼ (jθ0, 0i þ jθ0, πi)=

ffiffiffi
2
p

are

FIG. 5. Numerical demonstration of the second- and first-order quantum phase
transitions. In panel (a), (b), and (c), we show the MOPs ζM,x , ζM,y , and Mz ,
respectively, as functions of the spin-spin coupling Jx for different Jy . Here, the
magnetic field strength is set to be ϵ ¼ 1 and the spin number is N ¼ 200.
When Jy is smaller than second-order QPT coupling Jyc,II ¼ ϵ=2 ¼ 0:5, the
second-order QPT happens at Jxc,II ¼ ϵ=2 ¼ 0:5 (see the red and green
lines). For Jy . Jc,II, the first-order QPT occurs at Jxc,I ¼ Jy (see the blue line).
In panel (d), we plot ζM,x with Jy ¼ 0:6 . Jyc,II for different spin numbers N.
The diverging slope at the phase transition point indicates the occurrence of a
first-order instead of a second-order QPT.

FIG. 6. Numerical verification of the first-order QPT from the FM-Y phase to the
FM-X phase. In panel (a), we plot the sensitivity χ(Jx ) for different spin-spin
coupling Jy . Only if Jy . Jyc,II ¼ 0:5, large sensitivity at the phase transition
point can be obtained (see the blue-dashed line). Here, the other parameters
are ϵ ¼ 1, spin number N ¼ 100, and the location of the phase transition
points are marked by the black-dashed lines. In panel (b), we plot the maximum
of the sensitivity χmax for different spin numbers N with fixed Jy ¼ 0:6.
According to the fit function f (x) ¼ 0:0015x2 � 0:069x þ 8:38, χmax diverges
with the spin number in N2-scaling.
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presented by the three columns in Fig. 8, respectively. The cigarlike
structures lie in the xz-plane, as the strong spin-spin coupling Jx
along the x-direction overwhelms the spin-spin coupling along the
y-direction in the FM-X phase. From the Q-function, we can also
see that Mz is a finite negative value. The magnetic OP ζM,y is very
small and will approach zero when N ! 1. In the bottom row, we
show the cross section of the Q-functions in the xz-plane. The
blue-solid lines are obtained by the numerical ground states, and
the gray-dotted lines are the analytic results for the corresponding
three coherent spin states. The perfect coincidence verifies that the
ground state of the LMG model in the FM-X phase is indeed a
coherent spin state in the large N limit.

Similar to the FM-X phase, the FM-Y phase also has two
degenerate ground states jθ0, π=2i and jθ0, 3π=2i, where the polar
angle θ0 is determined by the parameters of the Hamiltonian as
given in Eq. (A10). The ensemble mean value of both hŜxi0 and
hŜyi0 are zero. However, the magnetic fluctuations along the y-axis
characterized by the magnetic OP ζM,y is finite, which can be
seen from the Q-function of states jθ0, π=2i, jθ0, 3π=2i, and
jGþi ¼ (jθ0, π=2i þ jθ0, 3π=2i)=

ffiffiffi
2
p

in Fig. 9. The cigarlike

structures lie in the yz-plane, as the strong spin-spin coupling Jy
along the y-direction dominates in the FM-Y phase. In this case,
ζM,x is very small and goes to zero for N ! 1.

In summary, we have revealed the first-order QPT in the
traditional LMG model via the magnetic OPs ζM,x and ζM,y .
We predict that a similar first-order QPT should also exist in the
XY Ising chain in a transverse field. The Husimi Q-functions show
the fundamental difference between the ground state wave func-
tions of the three quantum phases in the LMG model. We also
numerically verified that the ground states of the LMG model are
coherent spin states.

B. Dicke-LMGx model

In this subsection, we mainly focus on the second-order
superradiant QPT in the model,

Ĥ ¼ d̂yd̂ þ 2λffiffiffiffi
N
p Ŝx(d̂ þ d̂y)þ ϵŜz � 2

N
JxŜ

2
x: (23)

This model can be obtained by setting the spin-spin coupling along
the y-direction to zero (i.e., Jy ¼ 0) in the Dicke-LMG model (3).
Thus, we call it the Dicke-LMGx model. In the original Dicke
model,69 Dicke investigated the superradiance of an atomic ensemble
composed of a large amount of indistinguishable two-level atoms as
opposed to spins. Nevertheless, mathematically, indistinguishable
two-level atoms are equivalent to spin-halves. Here, for the sake of
consistency, we replace the atoms with spins.

The superradiant QPT in the Dicke model was first predicted
by Hepp and Lieb in 1973.27 Via analyzing the free energy per
particle, they found that there exists a thermodynamic phase transi-
tion as well as a QPT from the normal phase to the superradiant
phase, in which macroscopic excitations exist in the ground state.
Later, Wang and Hioe theoretically revisited this issue with a
much simpler method.58 The QPT is easily shown with numerical
simulation and has also been demonstrated in a recent experiment
with a Bose-Einstein condensate (BEC).99 However, the thermo-
dynamic phase transition has not been demonstrated and the
underlying mechanism is also missing. During our numerical
simulation, we found that the phase transition temperature is
strongly dependent on the order of two limits: the thermody-
namic limit N ! 1 and the Hilbert space cutoff corresponding to

FIG. 7. (a) Husimi Q-function of the ground state jθ0 ¼ π, f0i (i.e., the Dicke
state jN=2, � N=2i) of the spin in the paramagnetic phase. (b) and (c) the
cross sections of the Q-function in the xz- and yz- planes. The red and gray
lines are the numerical and analytic results, respectively. Here, the parameters
are taken as ϵ ¼ 1, Jx ¼ 0, Jy ¼ 0, and N ¼ 200.

FIG. 8. The Husimi Q-function of the ground states of the spin in the FM-X
phase. Panels (a)–(c) are the Q functions of the two degenerate states jθ0, πi,
jθ0, 0i, and the superposition of these two states jθ0, 0i þ jθ0, πi, respec-
tively. The curves underneath are the contour projections of the corresponding
Q-functions in xy-plane. The bottom row (d)–( f ), displays cross sections of the
Q-function in the xz-planes. The red and gray lines are the numerical and ana-
lytic results, respectively. Here, the parameters are taken as ϵ ¼ 1, Jx ¼ 0:6,
Jy ¼ 0 and N ¼ 200.

FIG. 9. The Husimi Q-function of the ground states of the spin in the FM-Y
phase. The three columns correspond to the Q functions of the two degenerate
states jθ0, π=2i, jθ0, 3π=2i, and the superposition of these two states
jθ0, π=2i þ jθ0, 3π=2i, respectively. The curves underneath are the contour
projections of the corresponding Q-functions in the xy-plane. Here, the parame-
ters are taken as ϵ ¼ 1, Jx ¼ 0, Jy ¼ 0:6, and N ¼ 200.
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the bosonic mode Ncutoff ! 1. In the following, we only focus on
the superradiant QPT.

There is a fundamental challenge to achieve the superradiant
QPT in the Dicke model—the no-go theorem. The occurrence of
the superradiant QPT is forbidden by the Thomas-Reiche-Kuhn
(TRK) sum rule,33,34 as the atom-field (the spin-boson in our
model) coupling cannot exceed the phase transition strength
λc,II ;

ffiffiffi
ϵ
p

=2 in a natural atomic system. There are many theoreti-
cal proposals to circumvent the no-go theorem. In 2007, Dimer
et al. proposed to construct an effective Dicke Hamiltonian with a
four-level atomic ensemble in an optical cavity.100 Ciuti et al. pro-
posed Cooper pair boxes capacitively coupled to a resonator73 or
three-level systems101 to realize the superradiant QPT. Bastidas
et al. suggested periodically modulating the spin-boson coupling to
circumvent the no-go theorem.102 Recently, Lü et al.103 utilized the
nonlinear coupling between a mechanical oscillator and an ancil-
lary cavity mode to realize the superradiant QPT in the mechanical
mode. In this subsection, we will show that this challenge can be
easily overcome with the help of the dipole-dipole interaction
between spins (atoms), which has previously been disregarded. The
spin-spin coupling lowers the phase transition spin-boson coupling
strength required by the superradiant QPT.

The Dicke-LMGx model has two quantum phases: the PN
phase and the FS phase. The phase diagram of the Dicke-LMGx
model can be obtained by setting Jy ¼ 0 in Fig. 3. We present the
numerical simulation of the phase diagram with the superradiant
OP ζS and the magnetic OP ζM,x in panels (a) and (b) in Fig. 10,
respectively. The other magnetic OP ζM,y is zero in both phases
and has been ignored in this subsection. The phase boundary
given by 4λ2 þ 2Jx ¼ ϵ is depicted by the green line, which corre-
sponds to the green line in Fig. 3 exactly. In the PN phase, both the
superradiant OP ζS and the magnetic OP ζM,x are zero. In the FS
phase, both ζS and ζM,x are finite except when λ ¼ 0. In panel (a),
we see close to the Jx axis, ζS marginally increases with Jx after
passing the boundary and its magnitude is negligibly small even
in the FS phase, as the magnetic OP ζS is proportional to λ2

[see Eq. (A17)]. However, ζM,x always increases to a relatively large
value after the parameters cross the phase boundary as shown in
panel (b).

Now, we show how to overcome the no-go theorem in super-
radiant QPT. In Fig. 11, we plot the OPs ζS and ζM,x in panels
(a) and (b) as functions of spin-boson coupling λ with fixed
spin-spin coupling Jx . The position of the new phase transition
spin-boson coupling λc,II ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ� 2Jx
p

=2 is marked by the vertical
black-dashed lines. For a larger Jx case, a relatively smaller spin-
boson coupling λ is required to trigger the QPT from the PN phase
to the FS phase. With the help of the dipolar coupling along the
x-axis, a weak spin-boson coupling can still induce the superradiant
QPT. Thus, the constraint from the no-go theorem in the Dicke
model is easily overcome. However, to obtain a larger superradiant
OP ζS (more excitations in the bosonic mode), strong spin-boson
coupling is still needed. In Fig. 12, we plot the OPs ζS and ζM,x as
functions of spin-spin coupling Jx with fixed spin-boson coupling λ
in panels (a) and (b), respectively. After the QPT, smaller ζS are
obtained for smaller λ but with the same Jx . Specifically, in the case
of λ ¼ 0, the superradiant OP ζS is still zero after the QPT when
Jx . Jxc,II as shown by the red line in panel (a). In this case, the
system is actually in the FN phase.

FIG. 10. Numerical demonstration of the phase diagram of the Dicke-LMGx
model with the superradiant order parameter ζS ¼ hd̂yd̂i0=N in panel (a) and
the magnetic order parameter ζM,x ¼ hŜ2xi0=N2 in panel (b). Here, the energy
splitting of the spins is set as ϵ ¼ 1, the spin number in this figure is N ¼ 40,
and the cutoff of the dimension of the bosonic mode is also set as 40.

FIG. 11. Numerical demonstration of the QPT from the paramagnetic-normal
(PN) phase to the ferromagnetic-superradiant (FS) phase. In panels (a) and (b),
we show the order parameters ζS and ζM,y , respectively, for different spin-spin
coupling Jx . The position of the phase transition spin-boson coupling λc,II ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ� 2Jx
p

=2 is marked by the black-dashed lines. Here, the other parameters
are set as ϵ ¼ 1, N ¼ 80, and the bosonic mode cutoff is 80.

FIG. 12. Numerical demonstration of the QPT from the paramagnetic-normal
phase to the ferromagnetic-superradiant (FS) phase. In panels (a) and (b), we
show the order parameters ζS and ζM,y , respectively, for different spin-boson
coupling λ. The position of the phase transition spin-spin coupling Jxc,II ¼
ϵ=2� 2λ2 is marked by the black-dashed lines. Here, the other parameters are
set as ϵ ¼ 1, N ¼ 80, and the bosonic mode cutoff is 80.
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At the end of this subsection, let us shed light on the ground
states of the system with the Husimi Q-functions. The Q-function
of the spin is defined in Eq. (22) after tracing out the bosonic
degrees of freedom, such that the Q-function of the bosonic mode
is defined as

Q(α) ¼ 1
π
Trspin[hαjρ̂g jαi], (24)

where ρ̂g is the ground-state density matrix of the entire system,
jαi is the bosonic coherent state with amplitude α, and Trspin
means tracing out the spin degrees of freedom. The ground state
of the PN phase is 0j i � jπ, f0i, i.e., the bosonic mode is in the
vacuum state and the spins are in the coherent spin state with
θ0 ¼ π and undetermined f0. The FS phase has two degenerate
ground states j ffiffiffiffiNp α0i � jθ0, πi and j � ffiffiffiffi

N
p

α0i � jθ0, 0i, where
θ0 and α0 are determined by the parameters of the system as
given in Eqs. (A14)–(A16). In the FS phase, the system can be in
an arbitrary superposition of these two degenerate states. Thus,
the ensemble mean values of hd̂yi0 (or hd̂yi0) and hŜxi0 are zero.
However, the mean of the coupling terms hd̂Ŝxi0 and hd̂yŜxi0 are
finite negative values, which minimize the ground-state energy of
the whole system.

The ground state of the bosonic mode changes from the
vacuum state to a coherent state after the superradiant QPT. The
Q-function of the bosonic mode for different spin-boson couplings
is displayed in Fig. 13. In panel (a), we show the Q-function of the
bosonic mode in the ground state (the vacuum state) of the PN
phase with 2Jx þ 4λ2 , ϵ. There is only one peak located at α ¼ 0.

For panels (b) and (c), the system is in the FS phase with
2Jx þ 4λ2 . ϵ and the spin-boson coupling λ leads to shifting of the
peak along the real axis (as proven in Sec. IV). Here, we take the
ground state of the FS phase as the symmetric quantum superposition
state jGþi ¼ (j ffiffiffiffiNp α0i � jθ0, πi þ j �

ffiffiffiffi
N
p

α0i � jθ0, 0i)=
ffiffiffi
2
p

. In
panel (b), the spin coupling λ is not large enough to split the
Q-function into two separated peaks like in panel (c). This demon-
strated more in panel (d), which shows the cross section of the
Q-function on the real-α plane.

The Q-function of the spins is displayed in Fig. 14 with the
same parameters as in Fig. 13. For the PN phase as shown in panel
(a), the normalized spin Q-function is a cigarlike structure lying
along the negative z-axis. For the FS phase as shown in panels (b)
and (c), the interaction along the x-axis splits the Q-function in the
xz-plane. The Q-function of the ground state jGþi has two
branches on the negative-x and positive-x half planes correspond-
ing to the two degenerate ground states, respectively. For larger λ,
larger polar angles θ0 are obtained as shown in panel (d).

In summary, we presented the details of the second-order
QPT in the Dicke-LMGx model via the superradiant OP ζS and
the magnetic OP ζM,x. We showed that the superradiant QPT in
this model is immune to the no-go theorem. The spin-spin dipolar
interaction along the x-axis relaxes the constraint from the TRK
sum rule. However, to obtain a larger superradiant OP ζS, strong
spin-boson coupling is still needed.

FIG. 13. The Husimi Q(α)-function of the bosonic mode ground state for differ-
ent parameters. Here, α ¼ x þ iy is a complex number, the magnetic field
strength is set to be ϵ ¼ 1, the spin number is N ¼ 80, and the cutoff of the
bosonic mode is 80. Panel (a) is for the PN phase. Both panels (b) and (c) rep-
resent the FS phase. The cross sections of the Q-function in the xz-plane are
shown in panel (d). In the FS phase, there are two degenerate states
j ffiffiffiNp α0i � jθ0, πi and j �

ffiffiffi
N
p

α0i � jθ0, 0i. Here, we show the Q-function of
the superposition state j ffiffiffiNp α0i � jθ0, πi þ j �

ffiffiffi
N
p

α0i � jθ0, 0i.

FIG. 14. The Husimi Q(θ, f)-function of the ground states of the spins for dif-
ferent parameters. Here, the surface is obtained by transferring the spherical
coordinates [r ¼ Q(θ, f), θ, f] to the corresponding Cartesian coordinates
(x, y, z). The magnetic field strength is set to be ϵ ¼ 1, the spin number is
N ¼ 80, and the cutoff of the bosonic mode is 80. Panel (a) is for the PN
phase. Both panels (b) and (c) are for the FS phase. The cross sections of
the Q-function in the xz-plane are shown in panel (d). In the FS phase, there
are two degenerate states j ffiffiffiNp α0i � jθ0, πi and j � ffiffiffi

N
p

α0i � jθ0, 0i.
Here, we show the Q-function of the superposition state
j ffiffiffiNp α0i � jθ0, πi þ j �

ffiffiffi
N
p

α0i � jθ0, 0i.
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C. Dicke-LMGy model

In our previous work,9 we have revealed the first-order QPT
in the Dicke-LMGy model,

Ĥ ¼ d̂yd̂ þ 2λffiffiffiffi
N
p Ŝx(d̂ þ d̂y)þ ϵŜz � 2

N
JyŜ

2
y , (25)

with Jx ¼ 0 in Hamiltonian (3). In this subsection, we present
more details about the ground states and QPTs in this model.

The Dicke-LMGy model has three quantum phases: PN
phase, FN phase, and FS phase. The numerical demonstration of
the phase diagram is given in Fig. 15, which exactly coincides with
the one obtained via the mean-field theory (see Fig. 3 with Jx ¼ 0).
In panels (a) and (b), both the superradiant OP ζS and the mag-
netic OP ζM,x change continuously when the spin-boson coupling
λ crosses the phase transition point λc,II ;

ffiffiffi
ϵ
p

=2 (the green line) if
the spin-spin coupling Jy is below the phase transition strength
Jyc,II ; ϵ=2. This shows the second-order superradiant QPT from
the PN phase to the FS phase similar to the one in the Dicke
model.27,58 In panel (c), the magnetic OP ζM,y displays another
second-order QPT from the PN phase to the FN phase when the
spin-spin coupling Jy crosses the phase transition point Jyc,II
(the blue line) and the spin-boson coupling is below the phase
transition strength λc,II. This QPT coincides with the one found in
the LMG model.28–30 However, discontinuous changes occur in
all three OPs when the Hamiltonian parameters cross the red line
λ ¼ ffiffiffiffiffiffiffiffiffi

Jy=2
p

in the strong-coupling region with λ . λc,II and
Jy . Jyc,II. This indicates a first-order QPT between the FN phase
and the FS phase, which is of interest for quantum critical amplifi-
cation. We finally plot the traditional magnetic OP Mz in panel (d).
Similar to the LMG model, Mz cannot distinguish the FN and FS

phases and it cannot characterize the first-order QPT either as no
discontinuous change exists.

We show more details about the QPTs in the Dicke-LMGy
model in Fig 16. The superradiant OP ζS in panel (a) and the mag-
netic OP ζM,x in panel (b) behave similarly around the phase tran-
sition points. In the weak spin-spin coupling case Jy � Jyc,II,
second-order QPTs from the PN phase to the FS phase occurs at
λc,II (see the red and green lines). Also, from the red and green
lines in panel (c), we see that the magnetic OP ζM,y is very small
and changes marginally around the phase transition point λc,II.
This verifies that no magnetic order changes along the y-axis
occurs in these second-order QPTs. From the blue lines in panels
(a)–(c), we find that there exists a first-order QPT from the FN
phase to the FS when the spin-spin coupling Jy is greater than the
second-order phase transition strength Jyc,II. The OPs ζS and ζM,x
jump from zero to a finite value at the phase transition point
λc,I ¼

ffiffiffiffiffiffiffiffiffi
Jy=2

p
and at the same time, ζM,y drops to zero. Thus, the

first-order QPT results from the competition between the FS phase
that arises from strong spin-boson coupling along the x-axis and
the FN phase caused by the large spin-spin coupling along the
y-axis. In panel (d), we show the traditional magnetic OP Mz.
No discontinuous changes exist in Mz .

We verify that the FN-FS phase transition is indeed of
first-order in Fig. 17. Increasing the spin number N , the phase
transition shows singular scaling behavior in panel (a). However, in
panel (b), we see that no such discontinuous change in Mz at the
phase transition point. Here, we utilize the first derivative of the
superradiant OP ζS to characterize the sensitivity of the system at

FIG. 15. Numerical demonstration of the phase diagram of the Dicke-LMGx
model. Panels (a)–(d) describe the order parameters ζS, ζM,x , ζM,y , and Mz ,
respectively. Here, the energy splitting of the spins is set as ϵ ¼ 1, the spin
number in this figure is N ¼ 40, and the cutoff dimension of the bosonic mode
is also set to 40.

FIG. 16. Numerical demonstration of the quantum phase transitions (QPTs) in
the Dicke-LMGy model. In panels (a)–(d), we show the order parameters ζS,
ζM,x , ζM,y , and Mz , respectively, for different spin-spin coupling Jx . Here, the
other parameters are ϵ ¼ 1, the spin number N ¼ 80, and the cutoff of the
bosonic mode is 80. The positions of the phase transition spin-boson coupling
λc,II ¼

ffiffiffi
ϵ
p

=2 ¼ 0:5 in the second-order QPTs and the first-order phase transi-
tion coupling λc,I ¼

ffiffiffiffiffiffiffiffiffi
Jy=2

p
in the first-order QPTs are marked by the black-

dashed lines.
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the phase transition point,

χ(λ) ¼ 1
N

d
dλ
hd̂yd̂i, (26)

where the factor 1=N is added for consistency with the magnetic
susceptibility. In panel (c), we plot the sensitivity as a function of
spin-boson coupling λ for different spin-spin coupling. Only the
sensitivity function of the first-order QPT (the red line) has a
sharp peak with diverging height at the phase transition point λc,I.
In panel (d), we plot the maximum of the sensitivity χmax (at the
phase transition point) of the first-order QPT as a function of the
spin number N . The sensitivity function χmax diverges with speed
/N2, which is different from the

ffiffiffiffi
N
p

-scaling obtained in the previ-
ous first-order dissipative transition32 or the linear N scaling in the
first-order thermodynamic phase transition predicted by Imry.104

Let us examine the ground-state wave functions of the three
quantum phases using the Husimi Q-function. Similar to the
Dicke-LMGx model, the ground state of the PN phase is j0i �
jπ, f0i and the FS phase has two degenerate ground states
j ffiffiffiffiNp α0i � jθ0, πi and j �

ffiffiffiffi
N
p

α0i � jθ0, 0i, where θ0 and α0 are
determined by the parameters of the system as given in
Eqs. (A14)–(A16). The FN phase also has two degenerate states
j0i � jθ0, π=2i and 0j i � jθ0, 3π=2i, where θ0 is determined by

Eq. (A10). In the following, we always choose the ground states of
the FS phase and FN phase as the symmetric quantum superposi-
tion of their corresponding two degenerate ground states.

The Q-function of the bosonic mode Q(α) in different phases
is displayed in Fig. 18. For panel (a), both the spin-boson coupling
and the spin-spin coupling are below the second-order phase tran-
sition points, i.e., λ , λc,II ;

ffiffiffi
ϵ
p

=2 and Jy , Jyc,II ; ϵ=2. Thus, the
system is in the PN phase. The bosonic mode is in the vacuum
state and the corresponding Q-function has only one peak located
at α ¼ 0. In panel (b), we increase the spin-boson coupling to
exceed the second-order superradiant QPT point (λ . λc,II) but fix
the spin-spin coupling at zero. In this case, the system is in the FS
phase. There are two peaks in Q(α) on the real axis corresponding
to the two coherent states j � ffiffiffiffi

N
p

α0i and j
ffiffiffiffi
N
p

α0i, respectively. In
panel (c), we increase the spin-spin coupling Jy but not enough to
suppress the FS phase, i.e., Jy , 2λ2. The system is still in the FS
phase and the ground state does not change. Thus, the Q-function
is exactly the same as the one in panel (b). This can be more
clearly seen in Fig. 19(c). In panel (d), the spin-spin coupling
crosses the FS-FN phase boundary (Jy . 2λ2) and it is also greater
than the second-order magnetic QPT point Jy . Jyc,II. The system,
therefore, goes to the FN phase. For the ground state of the FN
phase, the bosonic mode is in the vacuum state 0j i and its
Q-function is exactly the same as panel (a).

FIG. 18. The Husimi Q-function of the ground states of the bosonic mode in dif-
ferent phases. For panel (a), the system is in the PN phase with ground state
0j i � jπ, f0i. Increasing spin-boson coupling λ . λc,II ¼ 0:5, the system
goes to the FS phase with two degenerate states j ffiffiffiNp α0i � jθ0, πi and
j � ffiffiffi

N
p

α0i � jθ0, 0i. The Q-function of the symmetric quantum superposition
of these two FS ground states is displayed in (b). In panel (c), we increase the
spin-spin coupling Jy but not strong enough to cross the FS-FN boundary.
Thus, the Q-function is the same one as in panel (b). For Jy . 2λ2, the system
goes to the FN phase with two degenerate ground states j0i � jθ0, π=2i and
j0i � jθ0, 3π=2i. The corresponding Q-function of the bosonic vacuum state is
shown in (d). Here, the other parameters are set as ϵ ¼ 1, the spin number
N ¼ 80, and the cutoff of the bosonic mode 80.

FIG. 17. Verification of the first-order quantum phase transition (QPT) with fixed
parameters ϵ ¼ 1 and Jy ¼ 1. In panels (a) and (b), we plot ζS and Mz as func-
tions of λ, respectively, for different spin numbers. Here, the cutoff of the bosonic
mode is set to the spin number N. In panel (c), we plot the sensitivity function
defined in Eq. (26) as a function of λ with N ¼ 80. The blue and green lines are
for second-order QPTs with Jy � Jyc,II ; ϵ=2 ¼ 0:5, and the red line is for a first-
order QPT with Jy . Jyc,II . The inset shows the details of the sensitivity function of
second-order QPTs around the phase transition point λc,II ;

ffiffiffi
ϵ
p

=2 ¼ 0:5. In
panel (d), we plot the maximum of χ in the first-order QPT with Jy ¼ 1. The red
circles are the data from the numerical calculations, and the blue-solid line displays
the corresponding fitting function f (x) ¼ 0:067x2 � 1:881x þ 22:62. As we can
see, the sensitivity diverges as N2.
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To show how the bosonic Q-function changes with the param-
eters, we plot the cross section of Q(α) in the real-α plane in
Fig 19. In panel (a), we see that the height of Q(α) in the PN phase
decreases with the spin-boson coupling λ accompanied by increas-
ing width. This indicates that, for finite spin number N , the ground
state of the PN phase will deviate from the vacuum state slightly
and excitation in the bosonic mode increases with spin-boson cou-
pling λ. However, the excitation number is not large enough to
split Q(α) into two peaks. In panel (b), we see that, when λ passes
the phase transition point λc,II, the strong spin-boson coupling
begins to split Q(α) into two peaks and the separation between the
two peaks increases with λ. In panel (c), the red line with Jy ¼ 0
exactly coincides with the blue line with Jy ¼ 0:6. This indicates
that the spin-spin coupling Jy will not affect the state of the bosonic
mode before it passes the FS-FN boundary. Only after the QPT
from the FS phase to the FN phase, Q(α) suddenly collapses to the
vacuum state Q-function with a single peak at the origin. In panel
(d), we verify the validity of the assumed ground states in the
mean-field theory. The red line and gray lines are the Q-functions
of the numerical ground state of the PN phase and the Q-function
of the analytic mean-field vacuum state, respectively. The blue and
the green lines are the Q-functions of the numerical ground state of
the FS phase and the Q-function of the mixed coherent state (j �ffiffiffiffi
N
p

α0ih�
ffiffiffiffi
N
p

α0j þ j
ffiffiffiffi
N
p

α0ih
ffiffiffiffi
N
p

α0j)=2 from the mean field
theory. The numerical simulations coincide very well with the ana-
lytic results. This verifies the validity of the mean-field theory.

The Q-function of the spins in different phases is displayed in
Fig. 20. In the PN phase, the ground state of the spins is π, f0j i
(i.e., the Dicke state N=2, � N=2j i) with undetermined f0. As
shown in panel (a), the normalized spin Q-function is a cigarlike
structure lying along the negative z-axis. In the FS phase, the
strong spin-boson coupling along the x-axis splits the Q-function
into two cigars in the xz-plane as shown in panel (b). These two
branches correspond to the two degenerate ground states with
azimuth angles f ¼ 0 and f ¼ π, respectively. In the FN phase as
shown in panel (c), the strong spin-spin coupling along the y-axis
splits the Q-function into two cigars in the yz-plane, corresponding
to the two degenerate states with azimuth angles f ¼ π=2 and
f ¼ 3π=2, respectively. In panel (d), we increase the spin-boson
coupling λ across the FN-FS phase boundary. The system goes back
to the FS phase and the spin Q-function rotates back to the
xz-plane as the one in panel (b).

In summary, we revealed the first-order as well as the second-
order QPTs in the Dicke-LMGy model via the OPs ζS, ζM,x and
ζM,y . Utilizing the diverging sensitivity χ(λ) at the phase transition
point, we verified that the QPT between the FN phase and the FS
phase is indeed of first-order. This first-order QPT lays the founda-
tion for the QCD demonstrated in the following. We also showed
that the maximum of χ(λ) diverges with the spin number with
speed N2. We explicitly demonstrated the fundamental changes
within the ground state wave functions in the QPTs via the bosonic
and spin Husimi Q-functions.

In this section, by splitting the Dicke-LMG model (3) into
three submodels, we studied the ground states of different quantum
phases and their involved QPTs in detail. A full physical picture of

FIG. 19. In panels (a) and (b), we plot the cross section of the Q-functions for
the ground states of the PN phase and the FS phase, respectively. In panel (c),
we show the changes of the Q-function, when the system goes from the FS
phase to the FN phase as the spin-spin coupling Jy increases from zero (the
red-solid line) to 1 (the blue-dashed line). In panel (d), we compare the
Q-functions of the ground states obtained by numerical diagonalization with the
analytic results from the corresponding vacuum state and coherent state jα0i
obtained by the mean-field theory. Here, the other parameters are set as
ϵ ¼ 1, the spin number N ¼ 80, and the cutoff of the bosonic mode 80.

FIG. 20. The Husimi Q(θ, f)-function of the ground states of the spins for dif-
ferent phases. Here, the surface is obtained by transferring the spherical coordi-
nates [r ¼ Q(θ, f), θ, f] to the corresponding Cartesian coordinates (x, y, z).
Panels (a)–(c) display the Q-functions for the PN phase, FS phase, and FN
phase, respectively. In panel (d), the strong spin-boson coupling λ suppresses
the FN phase and the system transitions back to the FS phase with a similar
Q-function in panel (b). The other parameters are set as ϵ ¼ 1, the spin
number N ¼ 80, and the cutoff of the bosonic mode 80.
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the Dicke-LMG model can be constructed. In the following, we will
show that the giant sensitivity existing in the first-order QPT can
be utilized for quantum critical amplification. We also propose a
class of biased detectors with an amplification scheme that exploits
the quantum singularity in first-order QPTs.

VI. DYNAMICAL QUANTUM CRITICAL AMPLIFICATION

In Sec. II, we explained the critical amplification scheme and
the output signal of a general QCD. In this section, we take an
explicit QCD described by the Dicke-LMGy model to demonstrate
the dynamical quantum critical amplification process. We also
show the dynamical change in the wave function of the detector to
reveal the microscopic variation during the amplification.

In our QCD, the weak input signal to be measured functions
as a control, similar to a single-photon detector.6 The transduc-
tion process of the detector is modeled as a weak input signal
induced time-dependent variation of the spin-boson coupling
strength λ(t) ¼ λ0 þ Δλ� Pe(t). Based on the phase diagram
of the Dicke-LMGy model obtained in Sec. V, we bias the spin-
boson coupling λ0 very close to the phase transition point
λc,I ¼

ffiffiffiffiffiffiffiffiffi
Jy=2

p
. Thus, even a very small parameter variation Δλ

(amplitude) can trigger a first-order QPT from the FN phase to
the FS phase. The time-dependent variation of the spin-boson
coupling Δλ� P(t) is assumed to be proportional to the transduc-
tion probability P(t).51 The amplified output signal of the QCD is
the macroscopic excitations in the bosonic mode. After the
amplification, the bosonic mode evolves from the initial vacuum
state to a coherentlike state with macroscopic excitations.

We emphasize that the dynamical behavior of the first-order
QPT system around the phase transition point determines whether
the quantum singularity can be utilized as a resource for quantum
amplification. The giant sensitivity of a first-order QPT shown in
Sec. V only exists in a transition between the ground states of two
neighboring quantum phases, which cannot be connected via an
adiabatic evolution.61 In our detector, the quantum critical amplifi-
cation is realized by varying the spin-boson coupling across the
phase boundary to trigger the first-order QPT. However, starting
from the ground state of the FN phase, the detector can alterna-
tively evolve to an arbitrary excited state instead of going to the
ground state of the FS phase, thereby completely degrading the crit-
ical amplification. In this section, to identify the existence of the
quantum critical amplification during a dynamical process, we
show the dynamics of the first-order QPT in our detector model
with 80 spins via direct numerical time evolution. We show that a
linear scaling in the quantum gain and the SQNR of the QCD is
obtained, instead of the N2 sensitivity of the first-order QPT.

A. Amplification via first-order quantum phase
transition

We now introduce two quantities to characterize the perfor-
mance of a QCD. The first one is the quantum gain (i.e., the
amplification factor),

g(t) ¼ hψ(t)jd̂
yd̂jψ(t)i

hψ(0)jd̂yd̂jψ(0)i , (27)

where ψ(0) is the ground state of initial Hamiltonian H(0) with
bias λ ¼ λ0 and ψ(t) is the wave function of the detector at time
t. As shown later, the quantum gain can be used as a unique
characteristic of first-order QPTs. To characterize the quantum
noise in our QCD, we define the signal-to-quantum noise ratio
(SQNR) as105

SQNR ¼ hd̂y(t)d̂(t)i2=h[Δd̂y(t)d̂(t)]2i, (28)

where h[Δd̂y(t)d̂(t)]2i ¼ h[d̂y(t)d̂(t)]2i � hd̂y(t)d̂(t)i2 is the variance
of the bosonic excitation number operator.

The full dynamics of the whole system is governed by the
time-dependent Hamiltonian H(t), which is formed by replacing
the constant spin-boson coupling λ with the time-dependent one
λ(t) in Eq. (25). The exact procedure to perform the numerical
time evolution is given in Appendix B. Alternatively, we can also
use the time-dependent input signal to control the spin-spin cou-
pling [Jx(t) or Jy(t)] to realize the quantum amplification with fixed
spin-boson coupling (data not shown).

The dynamical amplification in the QCD is demonstrated by
the time-dependent gain as a function of the bias spin-boson cou-
pling λ0 and time in Fig. 21. From the time-dependent gain in
Fig. 21(b), we find that the efficient amplification triggered by a
very small parameter change can only be obtained if the system is
biased very close to the phase transition point. In the simulation,
the spin-spin coupling is taken as Jy ¼ 1 . Jc,II to prepare for a
first-order QPT, and the amplitude of the small change of the spin-

FIG. 21. Demonstration of the first-order dynamical quantum phase transition
via the time-dependent quantum gain g(t) ¼ hd̂y(t)d̂(t)i=hd̂y(0)d̂(0)i. In panel
(a), we show the envelope Pe(t) of the time-dependent parameter we used in
this paper. In panel (b), we show the dynamics of the quantum gain contributed
from a first-order quantum phase transition (QPT). Here, the spin-spin coupling
is fixed at Jy ¼ 1 . Jyc,II and the spin-boson coupling varies with time
λ ¼ λ0 þ Δλ� Pe(t). The amplitude of the small change in the parameter λ is
set to be Δλ ¼ 0:01 and the time-dependent envelope Pe(t) is given in panel
(a). In panel (c), we increase the amplitude Δλ to 0:04. In panel (d), we show
the time-dependent gain yielded by a second-order QPT with Jy , Jyc,II . In this
figure, the other parameters are taken as ϵ ¼ 1, Jx ¼ 0, both the spin number
N and the bosonic mode cutoff the bosonic mode are 40, and the time is in
units of 1=ω0.
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boson coupling is set to be Δλ ¼ 0:01. In Fig. 21(c), we increase
the variation amplitude Δλ to 0:04. We see that the location of the
large-gain peak shifts and its height increases. In Fig. 21(d), we
show that efficient amplification cannot be obtained from the
second-order QPTs with spin-spin coupling Jy ¼ 0.

We explicitly demonstrate the necessity of the first-order
QPTs for dynamical quantum critical amplification in contrast
with second-order QPTs. In Fig. 22(a), we plot the gain as a func-
tion of the bias spin-boson coupling for different values of the
spin-spin coupling Jy . We see that, for second-order QPTs with
weak spin-spin coupling Jy � Jyc,II ¼ ϵ=2 (the pink and green
curves), there is only a low and flat peak in the quantum gain
located around the second-order phase transition spin-boson cou-
pling λc,II ¼

ffiffiffi
ϵ
p

=2. However, for the first-order QPT with strong
spin-spin coupling Jy . Jyc,II (the blue curve), a very sharp peak
exists in the quantum gain around the first-order phase transition
point λc,I ¼

ffiffiffiffiffiffiffi
J=2

p
. λc,II. Thus, the first-order QPT is essential for

amplification in our QCD. Here, we also see that the dynamics of
the detector is highly sensitive to the initial bias λ0. Similar to the
enhanced decay of the Loschmidt echo by the criticality in a
second-order QPT,35 the enhanced quantum gain in our QCD is
a universal and unique characteristic of quantum singularity in a
first-order QPT.

To show the high figures of merit of our QCD, we present the
scaling of the quantum amplification with the spin number N in
Figs. 22(b)–22(d). In panel (b), we see that the maximum gain is

linearly proportional to N . We contrast the amplification resulting
from the first-order QPT (the blue diamond line) and second-order
phase transitions (the pink triangle line and the green circle line).
The latter is negligibly small when compared with the first-order
QPT. In panel (c), we derive the slope of the quantum gain
dgmax=dN as a function of the spin-spin coupling Jy . There exists a
“phase transition” phenomenon in the slope at the same phase
transition point Jyc,II of the transition from second-order to
first-order QPTs. The corresponding SQNR for the three lines are
displayed in panel (d). The amplification based on the first-order
QPT has a much higher SQNR than that of second-order QPTs.
Similar to the quantum gain (the rescaled excitation number in the
output bosonic mode), the SQNR also increases linearly with the
spin number. The SQNR of the final output state is consistent with
the SQNR of a coherentlike state.

Let us analyze the long-time dynamical behavior of the detec-
tor. In Fig. 23(a), we plot the time-dependent quantum gain g(t) at
the optimized bias spin-boson coupling λ0, which gives the
maximum quantum gain. Here, different lines denote different spin
numbers. We find that the quantum gain oscillates periodically as
the whole system is closed. Starting from the FN phase, the detector
swings to the FS phase and back. Furthermore, the time-evolution
period is also dependent on the spin number N . In Fig. 23(b), we
plot the time the quantum gain g(t) takes to reach its first
maximum Tpeak as a function of the spin number. We see that
Tpeak is quasilinearly proportional to N .

B. Time dynamics of the wave function

For second-order QPTs, the substantial change only exists in
the ground-state waves at the phase boundary. Thus, the Loschmidt
echo, which is defined as the projection of the wave function on the
initial state [see Eq. (29)], is naturally selected to characterize the
critical dynamics of the system. However, for first-order QPTs, the
Q function turns out to be a more powerful tool to reveal the
intrinsic changes within the detector during the dynamical critical
amplification. The numerical approach we introduced, which
allows us to calculate the time-dependent Husimi Q-functions of
both the bosonic mode and the spin ensemble, holds a fundamen-
tal advantage for dynamical amplification and noise calculations.

FIG. 22. Contrast of the quantum gains g from the second-order and first-order
quantum phase transitions (QPTs). In panel (a), we show the quantum gain as
a function of the bias spin-boson coupling λ0 at the time when g(t) reaches its
first maximum. The pink and green lines with small spin-spin coupling Jy �
Jyc,II are from the second-order QPTs and the blue line with strong spin-spin
coupling (Jy . Jyc,II) represents the gain from the first-order QPT. Panel (b)
shows the linear scaling of the maximum quantum gain with the spin number N
for different spin-spin coupling Jy . The corresponding signal-to-quantum noise
ratios are shown in panel (d). In panel (c), we show that there is a phase-
transitionlike behavior in the slope of the maximum gain when Jy crosses the
phase transition point Jyc,II ¼ 0:5.

FIG. 23. The long-time dynamical behavior of the quantum gain. In panel (a),
we plot the quantum gain g(t) as a function of time with optimized bias spin-
boson coupling λ0. Different lines denote different spin numbers N. In panel (b),
we show the time Tpeak to reach the first maximum of g(t) for different values of
the spin number N. The other parameters in this figure are taken as ϵ ¼ 1,
Jx ¼ 0, and Jy ¼ 1.
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We first look at the Q-function of the bosonic mode, which
reveals the microscopic change in the quasidistribution of the
output mode. In Fig. 24(a), we only show the cross section of the
Q-function in the real plane at different times t, as the essential
variation only occurs on the real axis. Initially, the system is in the
FN phase and the bosonic mode is in an extremely low-excitation
state. The corresponding Q-function has a single peak at the origin.
Then, the height of this peak begins to decease (green-dotted line).
Finally, the central peak splits into two separated peaks (black line),
which means that the bosonic mode has been excited to a coherent-
like state with large excitation numbers. The dynamics of the
bosonic Q-function shows the transition from the normal phase to
the superradiant phase. The macroscopic excitation in the bosonic
mode functions as the amplified output signal of the QCD, which
can be read out directly with a classical device.

The dynamical transition of the spins from the FM-Y phase to
the FM-X is displayed by the spin Q-function in Figs. 24(b) and 24(c).
Here, to show the dynamical change in the distribution function,
we do not normalize the spin Q-function. Initially, the spins are in
the FM-Y phase, and thus the spins are polarized in the yz-plane as
illustrated in panel (b). The two cigarlike structures correspond to
the two degenerate ground states of the FM-Y phase. As shown in
panel (c), two new branches in the xz-plane appear and swell with
time. At the same time, the two branches in the yz-plane shrink
and finally disappear [see panel (d)]. During the transition from
the FM-Y phase to the FM-X phase, the spin noise in the y-axis
decreases, but the spin noise in the x-direction increases. The
dynamical change in the spin-fluctuations can also be probed
experimentally through spin noise spectroscopy.53

One of the central concepts in wave function dynamics pro-
posed in the previous literature is the Loschmidt echo,

L(t) ; jhψ(0)jψ(t)ij2, (29)

where jψ(t)i is the wave function of the system at time t.
The Loschmidt echo describes the deviation of the wave function
from the initial state. It was first introduced to characterize the deco-
herence of a quantum system as a correspondent of the classical
chaotic system.106–108 In 2006, Quan et al. proposed measuring the
Loschmidt echo to show the quantum criticality of second-order
QPTs in a transverse Ising chain.35 Here, we can also use the
Loschmidt echo to show the quantum singularity during a first-order
QPT. From Fig. 25(a), we see that the decay of the Loschmidt echo is
greatly enhanced around the first-order phase transition point λc,I.
This enhancement also exists in the second-order QPT in our detec-
tor model as shown in Fig. 25(b). Thus, the enhanced decay in the
Loschmidt echo is a universal characteristic of a QPT but not unique
for first-order QPTs. In contrast, the enhanced quantum gain
around the first-order phase transition point shown in Sec. VI A is
the unique and universal characteristic of first-order QPTs.

Based on the Loschmidt echo, one can define a rate function,

ξ(t) ; � 1
N
log L(t), (30)

to characterize the exponentially decay scaling of L(t). In 2013,
Heyl et al. found that there exist nonanalytic kinks in the rate func-
tion ξ(t) and denoted these kinks as a universal behavior and a
standard sign of a “quantum phase transition” occurring in the

FIG. 24. Dynamics of the bosonic and spin Q-functions during the dynamical
quantum phase transition. (a) The cross section of the bosonic Q-function in the
real plane at different times. (b)–(d) The spin Q-function at different times. The
parameters in this figure are taken as follows: the energy splitting of the spin
ϵ ¼ 1, the spin-spin coupling in the x-direction Jx ¼ 0, the spin-spin coupling
in the y-direction Jy ¼ 1, spin number N ¼ 80, the cutoff the bosonic mode 80,
and the variation amplitude Δλ ¼ 0:01. The spin-boson coupling λ0 is biased
at the optimal spin-boson coupling in Fig. 21(b).

FIG. 25. Dynamics of the Loschmidt echo L(t) and the rate function ξ(t). In
panels (a) and (b), we show the enhanced decay of the LE during the first-order
and second-order dynamical quantum phase transitions, respectively. In panels
(c) and (d), we show the dynamics of the Loschmidt echo and the correspond-
ing rate function of the first-order QPT. Here, the spin-boson coupling is biased
at the optimal point, which leads to the maximum quantum gain. The other
parameters in this figure are taken as follows: the energy splitting of the spin
ϵ ¼ 1, the spin-spin coupling in the x-direction Jx ¼ 0, and the variation ampli-
tude of the spin-boson coupling Δλ ¼ 0:01.
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time domain—the dynamical QPT.36,109 Direct observation of these
kinks has also been realized in a trapped-ion quantum simulator.110

In Figs. 25(c) and 25(d), we show the decay of the Loschmidt
echo and the corresponding rate function, respectively. The
green and blue curves describe the case with spin numbers N ¼
40 and N ¼ 80, respectively. From panel (c), we see that the LE
collapses and revives periodically. The revival period increases
with spin number. In panel (d), we observe the nonanalytical
kinks in the rate function ξ(t) during the first-order QPT. The
kinking time exactly coincides with the time that the Loschmidt
echo L(t) reaches its minimum. Thus, the kinks of the rate func-
tion result from the dips (theoretically should be the zero-value
points) of the Loschmidt echo L(t). We emphasize that the wave
function resulting in these nonanalytical kinks is not the ground
state of the system in another phase. Converse to the Q-function,
we also see that the Loschmidt echo cannot reveal the intrinsic
change within the detector during the dynamical critical
amplification.

VII. EXPERIMENTAL IMPLEMENTATION

In the last decade, numerous quantum simulators have been
demonstrated as powerful tools for modeling strongly correlated
many-body systems. One of the most important applications of
these simulators is to demonstrate the QPTs and the corresponding
QPTs existing in quantum matter. Specifically, the well-known
Ising-type QPTs have been successfully simulated with Rydberg
atoms,38,111 trapped ions,37,112,113 and superconducting qubits.39,114

In this section, we will propose possible experimental platforms for
the first-order QPT in the Dicke-LMG model and the potential
implementation of our QCD.

The Dicke superradiant phase transition was first demon-
strated experimentally by Baumann et al. in a system formed by a
Bose-Einstein condensate coupled to an optical cavity.99 The main
challenge to observe the superradiant QPT in the experiment arises
from the strong light-atom interaction (i.e., the spin-boson cou-
pling in our model) required by the phase transition condition.
The phase transition light-atom interaction to realize the superra-
diant phase is of the same order as the atomic transition frequency,
which is extremely difficult to achieve. For natural atoms, this
strong light-atom coupling is even forbidden by the TRK sum
rule.33,34 One of the methods to circumvent this challenge is to
construct an effective two-level-atom ensemble with significantly
reduced transition frequency. This method was first proposed by
Dimer et al.,100 in which the two working levels are composed of
the two ground states of a four-level atom. The transition frequency
and the atom-field coupling of the effective two-level atoms are
determined by light-induced frequency shifts and Raman transition
rates, respectively. In the experiment,99 a similar ideal has been
applied to overcome the strong-coupling challenge. The effective
two-level system is constructed with two orbital states with zero
and finite momentum k, respectively. The energy splitting between
the two effective states ϵ ¼ 2ωr is given by the recoil frequency
ωr ¼ k2=2m (m is the mass of the atom). The coupling λ between
the effective two-level-atom ensemble and the output cavity mode
is controlled by an extra pump laser field. When the field-atom
coupling λ exceeds the phase transition coupling, both the

macroscopic excitation in the output mode and the long-range-
order pattern in the atoms were observed.

The second-order QPT in the LMG model has only been
demonstrated in a recent experiment with Dysprosium atoms (spin
number N ¼ 16).115 Here, the biggest challenge lies in achieving
the long-range homogeneous coupling between the spins. The
short-range or medium-range coupling between spins (or atoms)
has been utilized to demonstrate the QPTs in an Ising-type model,
such as the van der Waals interaction between Rydberg atoms,38,116

Raman transition induced spin-spin interaction in a trapped-ion
system,37,117 SQUID coupler mediated coupling between supercon-
ducting qubits,39,118 etc. However, these couplings decrease with the
distance r between the spins with the power law r�α (α � 1–6). In
the last two decades, several theoretical schemes have been proposed
to realize the long-range homogeneous coupling in the LMG model.
In the first scheme, the long-range homogeneous coupling is accom-
plished by eliminating the auxiliary bosonic mode in a driven Dicke
model,119 which can be implemented in a cavity quantum electrody-
namics (QED) setup,95 a BEC system,120 and a circuit-QED system.121

A similar method has been utilized in the experiment in Ref. 115. In
another scheme,117,122 the necessary coupling between trapped ions is
mediated by two pump lasers in the Mølmer-Sørensen configura-
tion.123 In the Lamb-Dicke regime, the coupling strength given by the
resonant second-order process is insensitive to the vibration states.
Recently, an important breakthrough in the experiment has been
attained. The long-range spin exchange interaction mediated by an
optical cavity has been achieved with 105 laser-cooled 87Sr atoms.124

Due to the required strong long-range spin-spin coupling
between a large number of spins (N . 30 spins are required to
observe the first-order QPT), it is quite challenging to experimentally
demonstrate a QCD based on the first-order QPT in the Dicke-LMG
model. However, we note that a QCD based on the first-order QPT in
the Ising XY model (with short-range interaction) predicted in Sec. IV
can be demonstrated in the near future. Recently, the XY-type cou-
pling has been realized with superconducting qubits125 and Rydberg
atoms.126 The significant advance in the integration of superconduct-
ing qubits127 and trapping and fast assembling cold atoms128 enables
engineering of scalable quantum simulators. These quantum simula-
tors form solid platforms for the implementation of QCDs.

VIII. SUMMARY

We present a new paradigm in weak-signal detection—the
QCD, which implements an amplification scheme by exploiting
the singularity of first-order QPTs. After transduction (absorption),
the input weak signal induces a minor change in the detector
parameter. The detector is prebiased very close to the phase transi-
tion point of a first-order QPT. Thus, this small variation can
trigger a QPT resulting in a macroscopic change in the order
parameter of the detector. This macroscopic change functions as
the output signal of the detector.

We use a specific detector model—the Dicke-LMG model—to
explain the working mechanism of a QCD explicitly. We introduce
two magnetic order parameters to characterize the first-order QPT
between two ferromagnetic phases. Specifically, we predict a univer-
sal first-order QPT in the interacting-spin system resulting from
the competition of two different long-range spin orders. We show

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 126, 174502 (2019); doi: 10.1063/1.5121558 126, 174502-19

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


that the no-go theorem, which rules out the existence of the super-
radiant QPT, can be circumvented with spin-spin (atom-atom)
interaction. We introduce the spin Q-function to display the mac-
roscopic spin order and to show the fundamental change in the
ground-state wave function during QPTs. We contrast the behav-
iors of the first-order and second-order QPTs in the detector. We
show that first-order QPTs are essential for QCDs.

We define the quantum gain and the SQNR to show the
figures of merit of a QCD. We also utilize the time-dependent Q
function to show the intrinsic change within the detector during
the dynamical quantum critical amplification. We found that the
decay of the Loschmidt echo will be enhanced at the phase transi-
tion points of both first- and second-order QPTs. However, only
the enhanced quantum gain around the phase transition point can
be utilized as the unique and universal measurable characteristic of
a first-order QPT. We also show the nonanalytical kinks in the rate
function (exponent of the Loschmidt echo), which occurs at the
time when the quantum gain of the detector reaches its maximum.

In recent experiments, second-order QPTs, especially the
Ising-type QPTs, have been successfully demonstrated with trapped
ions,37 cold atoms,38 and circuit QED.39 The recent advances in
laser trapping and assembling of cold atoms128 shows that a
quantum simulator with .100 spins can be built in the very near
future. These systems form excellent platforms for the physical real-
ization of our proposed QCD, especially the ones based on the
first-order QPT in the Ising XY model.
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APPENDIX A: QUANTUM PHASES VIA MEAN-FIELD
THEOREM

In this appendix, we provide the details to obtain the phase
diagram via the mean field theory. The ground state of the whole
system is given by the solutions of the equilibrium equations. For con-
venience, we first re-express the equilibrium equations (11)–(13) as

α ¼ �λ sin θ cosf, (A1)

0 ¼ ϵþ 2[(2λ2 þ Jx) cos
2 fþ Jy sin

2 f] cos θ
� �

sin θ, (A2)

0 ¼ [2λ2 þ Jx � Jy] sin
2 θ sinf cosf: (A3)

As shown in the following, there exist three types of solutions corre-
sponding to three different quantum phases.

The ground-state stability is determined by the 3� 3 Hessian
matrix

M ¼
@2E
@α2

@2E
@α@θ

@2E
@α@f

@2E
@θ@α

@2E
@θ2

@2E
@θ@f

@2E
@f@α

@2E
@f@θ

@2E
@f2

2
664

3
775, (A4)

where the elements are given by

@2E
@α2
¼ 2,

@2E

@θ2
¼ � ϵ

2
cos θ � 2λα sin θ cosf� (Jx cos

2 fþ Jy sin
2 f) cos 2θ,

@2E

@f2 ¼ �2λα sin θ cosfþ (Jx � Jy) sin
2 θ cos 2f,

@2E
@α@θ

¼ @2E
@θ@α

¼ 2λ cos θ cosf,

@2E
@α@f

¼ @2E
@f@α

� 2λ sin θ sinf,

@2E
@θ@f

¼ @2E
@f@θ

¼ �2λα cos θ sinfþ 1
2
(Jx � Jy) sin 2θ sin 2f:

The boundaries between these quantum phases are finally deter-
mined by the requirement of the positive definiteness of M.

(i) Paramagnetic-normal phase—The simplest solution of the
equilibrium equations is given by

sin θ0 ¼ 0, (A5)

cos θ0 ¼ �1, (A6)

α0 ¼ 0: (A7)

The azimuthal angle f0 is fully undetermined. Utilizing the solu-
tion, the Hessian matrix is simplified with nonzero elements,

M11 ¼ 2,

M22 ¼ ϵ

2
� Jx cos

2 f0 � Jy sin
2 f0,

M12 ¼M21 ¼ �2λ cosf0:

The positive definiteness of M requires

ϵ � (4λ2 þ 2Jx) cos
2 f0 þ 2Jy sin

2 f0: (A8)

As f0 is fully undetermined, the stability conditions for this solu-
tion require ϵ . (4λ2 þ 2Jx) and ϵ . 2Jy .

For this solution, the OPs are given by

hâyâi0
N
¼ 0,

hŜ2xi0
N2
¼ 0,

hŜ2yi0
N2
¼ 0, (A9)

and Mz ¼ �1=2. In this case, all the spins are polarized along the
negative z-axis and there are no macroscopic excitations in the
bosonic mode. Thus, this solution gives the PN phase.

(ii) Ferromagnetic-normal phase—The second solution is

cos θ0 ¼ � ϵ

2Jy
, (A10)
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cosf0 ¼ 0, (A11)

α0 ¼ 0, (A12)

requiring 2jJyj � ϵ. However, the negative branch Jy , 0 will be
ruled out by the stability condition later. Utilizing the solution, the
Hessian matrix is simplified with nonzero elements,

M11 ¼ 2,

M22 ¼ � ϵ

2
cos θ0 � Jy cos 2θ0,

M33 ¼ (Jy � Jx) sin
2 θ0,

M13 ¼M31 ¼ �2λ sin θ0 sinf0:

It is found that M is positive definite only if 2Jy � ϵ and
Jy � 2λ2 þ Jx . This solution has two degenerate branches with
f0 ¼ π=2 and f0 ¼ 3π=2 corresponding to two degenerate ferro-
magnetic states with spins polarized along the positive and negative
y-axis, respectively. This can be clearly shown by the spin
Q-function in Sec. V.

The mean values of the order parameters are obtained as

hâyâi0
N
¼ 0,

hŜ2xi0
N2
¼ 0,

hŜ2yi0
N
¼ 1

4
1� ϵ2

4J2y

 !
, (A13)

and Mz ¼ �ϵ=4Jy . In this case, parts of spins are polarized along
the y-axis forming many small ferromagnetic domains, but still
there are no macroscopic excitations in the bosonic mode. Thus,
this solution gives the FN phase.

It deserves to be pointed out that the system can be in any
superposition of these two degenerate ferromagnetic states when
the system transitions to the FN phase after a QPT. As a result, the
ensemble mean value of the y component of the total angular
momentum in the ground state is always zero hŜyi0 ¼ 0.

(iii) Ferromagnetic-Superradiant phase—The third solution is
given by

cos θ0 ¼ � ϵ

4λ2 þ 2Jx
, (A14)

sinf0 ¼ 0, (A15)

α ¼ �λ sin θ0 cosf0, (A16)

requiring j4λ2 þ 2Jxj � ϵ. Similarly, the negative branch is ruled
out by the stability condition. Utilizing the solution, the Hessian
matrix is simplified with the nonzero elements,

M11 ¼ 2,

M22 ¼ � ϵ

2
cos θ0 þ 2λ2 sin2 θ0 � Jx cos 2θ0,

M33 ¼ (2λ2 þ Jx � Jy) sin
2 θ0,

M12 ¼M21 ¼ 2λ cos θ0 cosf0:

To guarantee the positive definiteness of M, one requires
4λ2 þ 2Jx � ϵ and 2λ2 þ Jx � Jy . Similarly, this solution has two
degenerate branches with f0 ¼ 0 and f0 ¼ π corresponding to two
degenerate ferromagnetic states polarized along the positive and
negative x-axis, respectively. In the case of f0 ¼ 0, hŜxi0 is positive,
but hd̂y þ d̂i0 is negative. While for f ¼ π, hŜxi0 is negative, but
hd̂y þ d̂i0 is positive. As a result, the ensemble mean value of both
hŜxi0 and hd̂y þ d̂i0 are zero, but the mean of their product is a
finite negative value hŜx(d̂y þ d̂)i0 , 0 and this makes the total
energy reach its minimum.

The mean values of the order parameters are obtained

hâyâi0
N
¼ λ2 1� ϵ2

(4λ2 þ 2Jx)
2

" #
. 0, (A17)

hŜ2xi0
N
¼ 1

4
1� ϵ2

(4λ2 þ 2Jx)
2

" #
, (A18)

hŜ2yi0
N
¼ 0, (A19)

and Mz ¼ �ϵ=2(4λ2 þ 2Jx). In this case, part of spins are polarized
along the x-axis forming many small ferromagnetic domains.
At the same time, there are macroscopic excitations in the bosonic
mode. Thus, this solution gives the FS phase.

APPENDIX B: NUMERICAL SIMULATION

In the traditional multispin system, the dimension of the
Hilbert space /2N diverges exponentially with the spin number N ,
which makes it extremely hard to directly simulate for the N . 20
case. In our tractable model, this challenge can be circumvented
by performing the calculation in the Dicke-state subspace with
dimension N þ 1. If we take the cutoff of the bosonic mode as Nb,
the Hamiltonian of the whole system can be expanded with the
Nb � N states jni � jN=2, mi. Here, nj i (n ¼ 0, 1, 2, , Nb � 1) is
the Fock state of the bosonic mode, and N=2, mj i
(m ¼ �N=2, � N=2þ 1, , N=2� 1, N=2) is a Dicke state.69

1. Eigenstate spectrum and ground-state properties

Under the basis {jni � jN=2, mi}, any operator can be
expressed as a matrix. Specifically, we can diagonalize the matrix of
the Hamiltonian Ĥ to get its eigenstates and the eigenenergy spec-
trum. Each eigenstate is a vector with dimension Nb � N and the
mean value of an arbitrary operator Ô can be easily calculated with
the eigenstates obtained from the numerical diagonalization.

The Q-functions of the bosonic mode and the spins can also
be obtained by constructing the bosonic coherent states and the
coherent spin states on this basis.

By constructing the thermal equilibrium state density matrix,

ρ̂(T) ¼ 1
Z
e�βĤ ¼ 1

Z
M̂e�βD̂M̂y, (B1)

we can also study the thermoequilibrium property of the system at
finite temperature. Here, β ¼ 1=kBT is the inverse temperature and
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Z ¼ Trρ̂ ¼ Trexp(� βD̂) is the partition function. The unitary
matrix M̂ and the diagonal matrix D are obtained from the eigen-
decomposition of the Hamiltonian

ĤM̂ ¼ D̂M̂: (B2)

2. Dynamics in the Hilbert space

In the dynamical amplification part, we need to study the
dynamics of the system under a time-dependent Hamiltonian.
Analytically, we can utilize the time-ordered expansion,

jψ(t)i ¼
X1
k¼0

1
k!

ðt
0
� � �
ðt
0
dt1 � � � dtk T Ĥ(tk) � � � Ĥ(t2)Ĥ(t1)

� �jψ(0)i,
(B3)

to investigate the short-time behavior of the system. However, for
a QPT system, due to the vanishing energy gap, most interesting
effects come from the adiabatic long-time behavior. The numeri-
cal approach introduced in the following holds a significant
advantage for dynamical amplification and noise calculations in
the long-time limit.

By splitting the dynamical process into many small time
intervals (Δt1, Δt2, . . . , Δtk, . . .), the time evolution can be
approximated by

jψ(t)i ¼ � � � e�iĤ(tk)Δtk � � � e�iĤ(t2)Δt2e�iĤ(t1)Δt1 jψ(0)i: (B4)

The mean value of an arbitrary operator and its uncertainty can be
calculated via the wave function jψ(t)i.

3. Dynamics in the Louville space

The numerical method introduced in Appendix B 2 only
works for the time evolution of pure states. In this subsection, we
generalize this approach to the mixed-state case.

a. Single-body system

In a given basis spanned by { nj i} with dimension N , the
density matrix of an arbitrary state can always be expanded as

ρ̂ ¼
X
mn

ρmn mj i nh j, (B5)

where ρmn ¼ mh jρ̂ nj i is the element of the density matrix ρ̂. For a
close system, the dynamics of the density matrix is governed by the
Louville-von Neumann equation

d
dt

ρ̂(t) ¼ �i[Ĥ(t), ρ̂(t)] ; ^̂L(t)ρ(t), (B6)

where ^̂L(t) is a superoperator (N2 � N2 matrix) in the Louville
space. This equation has an equivalent form as the Schrödinger
equation. Thus, we can use the same method in Eq. (B4) to operate
the time evolution. For an open system, its dynamics is governed
by a master equation with extra fluctuation-dissipation terms ^̂LB

coming from the bath. The numerical approach can be generalized

to quantum open system straightforwardly. The key step for
numerical simulation of the time evolution in the Louville space is
to construct the matrix-form of the superoperator and the vector-
form of the density matrix. In the following, we will show how to
do this exactly.

To perform the time evolution in the Louville space, we can
reshape the density matrix ρ to a vector on the basis

ρj i ¼ ρmn m, nj i, (B7)

with

m, nj i ; mj i � nh j: (B8)

On this basis, we create a new space with dimension N2 and basis
m, nj i, which is the tensor product of a ket vector and a bra vector.
In MATLAB, if you make the operation ρ(:), the density matrix ρ
will be automatically reshaped to a vector in this space. On this
basis, we have the following Hilbert-Louville correspondences:

Ĥ(t)ρ̂(t)$ ^̂HL(t) ρ(t)j i, (B9)

ρ̂(t)Ĥ(t)$ ^̂HR(t) ρ(t)j i, (B10)

where the N2 � N2 superoperators are given by

^̂HL(t) ¼ Ĥ(t)� ÎR, (B11)

^̂HR(t) ¼ ÎL � ĤT (t), (B12)

and ÎR ¼ ÎL is the identity matrix with dimension N . Now, we give
the following correspondences to construct superoperators:

Ô1ρ̂$ Ô1 � ÎR ρj i, (B13)

ρ̂Ô1 $ ÎL � ÔT
1 ρj i, (B14)

Ô1ρ̂Ô2 $ Ô1 � ÔT
2 ρj i: (B15)

We emphasize that the order of these two operators Ô1 and Ô2

depends on the reshaping of the density matrix ρ to a vector ρj i.
One can also construct a space with basis

m, nj i ¼ mh j � nj i, (B16)

by the operation ρ0(:) in MATLAB. Then, we have the correspon-
dence in an inverse order,

Ô1ρ̂$ ÎR � ÔT
1 ρj i,

ρ̂Ô1 $ Ô1 � ÎR ρj i,
Ô1ρ̂Ô2 $ Ô2 � ÔT

1 ρj i:
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The mean value of any Hermitian operator in the Hilbert space can
be calculated as the inner product of two vectors in the Louville
space,

hÔi ¼ Tr[ρ̂Ô] ¼ Tr[Ôρ̂] ¼ Oh jρi ¼ ρh jOi: (B17)

b. Multibody system

If we have two systems A and B with basis { naj i � nbj i}, the
density matrix of the combined system can be expanded as

ρ ¼
X
mana

X
mbnb

ρmamb ;nanb mambj i nanbh j: (B18)

In this case, there are two main ways to reshape the density matrix
to a vector:

(i) First do the tensor product of different systems A and B
and then take the tensor product of bra and ket vectors,

ρj i ¼
X
mana

X
mbnb

ρmamb ;nanb ma, mb; na, nbj i, (B19)

with

ma, mb; na, nbj i ¼ maj i � mbj ið Þ � nah j � nbh jð Þ: (B20)

In this case, the Hilbert-Louville correspondence is given by

ÂB̂ρ̂$ Â� B̂
� �� ÎA � ÎB

� �
ρj i, (B21)

ρ̂ÂB̂$ ÎA � ÎB
� �� Â� B̂

� �T
ρj i, (B22)

Âρ̂B̂$ Â� ÎB
� �� ÎA � B̂

� �T
ρj i: (B23)

(ii) First do the tensor product of bra and ket vectors and then
do the tensor product of different systems A and B,

ρj i ¼
X
mana

X
mbnb

ρmana ;mbnb ma, na; mb, nbj i, (B24)

with

ma, na; mb, nbj i ¼ maj i � nah jð Þ � mbj i � nbh jð Þ: (B25)

In this case, we have the Hilbert-Louville correspondence

ÂB̂ρ̂$ Â� ÎA
� �� B̂� ÎB

� �
ρj i, (B26)

ρ̂ÂB̂$ ÎA � ÂT
� �� ÎB � B̂T

� �
ρj i, (B27)

Âρ̂B̂$ Â� ÎA
� �� ÎB � B̂T

� �
ρj i: (B28)

For the multibody system, the rules are the same as the two-body
system.

REFERENCES
1V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements:
Beating the standard quantum limit,” Science 306, 1330–1336 (2004).
2C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod.
Phys. 89, 035002 (2017).
3C. Boutan et al. (ADMX Collaboration), “Piezoelectrically tuned multimode
cavity search for axion dark matter,” Phys. Rev. Lett. 121, 261302 (2018).
4B. P. Abbott et al., “GW170104: Observation of a 50-solar-mass binary black
hole coalescence at redshift 0.2,” Phys. Rev. Lett. 118, 221101 (2017).
5R. H. Hadfield, “Single-photon detectors for optical quantum information
applications,” Nat. Photonics 3, 696 (2009).
6M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review
article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101
(2011).
7D. A. Glaser, “Some effects of ionizing radiation on the formation of bubbles in
liquids,” Phys. Rev. 87, 665 (1952).
8G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov,
B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond super-
conducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707
(2001).
9L.-P. Yang and Z. Jacob, “Quantum critical detector: Amplifying weak signals
using discontinuous quantum phase transitions,” Opt. Express 27, 10482–10494
(2019).
10I. Frérot and T. Roscilde, “Quantum critical metrology,” Phys. Rev. Lett. 121,
020402 (2018).
11V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev.
Lett. 96, 010401 (2006).
12B. Yurke, S. L. McCall, and J. R. Klauder, “Su(2) and Su(1,1) interferometers,”
Phys. Rev. A 33, 4033–4054 (1986).
13J. P. Dowling, “Correlated input-port, matter-wave interferometer:
Quantum-noise limits to the atom-laser gyroscope,” Phys. Rev. A 57, 4736–4746
(1998).
14J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, “Optimal fre-
quency measurements with maximally correlated states,” Phys. Rev. A 54,
R4649–R4652 (1996).
15C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and
M. Zimmermann, “On the measurement of a weak classical force coupled to a
quantum-mechanical oscillator. I. Issues of principle,” Rev. Mod. Phys. 52,
341–392 (1980).
16C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26,
1817 (1982).
17H. A. Haus and J. A. Mullen, “Quantum noise in linear amplifiers,” Phys. Rev.
128, 2407–2413 (1962).
18W. H. Louisell, A. Yariv, and A. E. Siegman, Quantum fluctuations and noise
in parametric processes. I,” Phys. Rev. 124, 1646–1654 (1961).
19B. R. Mollow and R. J. Glauber, “Quantum theory of parametric amplification.
I,” Phys. Rev. 160, 1076–1096 (1967).
20M. J. Collett and D. F. Walls, “Quantum limits to light amplifiers,” Phys. Rev.
Lett. 61, 2442–2444 (1988).
21A. Roy and M. Devoret, “Introduction to parametric amplification of quantum
signals with Josephson circuits,” C. R. Phys. 17, 740–755 (2016).
22A. Clerk, “Quantum-limited position detection and amplification: A linear
response perspective,” Phys. Rev. B 70, 245306 (2004).
23C. M. Caves, J. Combes, Z. Jiang, and S. Pandey, “Quantum limits on phase-
preserving linear amplifiers,” Phys. Rev. A 86, 063802 (2012).
24U. Gavish, B. Yurke, and Y. Imry, “Generalized constraints on quantum
amplification,” Phys. Rev. Lett. 93, 250601 (2004).
25A. Bülter, “Single-photon counting detectors for the visible range
between 300 and 1,000 nm,” in Advanced Photon Counting (Springer, 2014),
pp. 23–42.
26T. B. Propp and S. J. van Enk, “On nonlinear amplification: Improved
quantum limits for photon counting,” e-print arXiv:1809.02195 (2018).

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 126, 174502 (2019); doi: 10.1063/1.5121558 126, 174502-23

Published under license by AIP Publishing.

https://doi.org/10.1126/science.1104149
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/PhysRevLett.121.261302
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1038/nphoton.2009.230
https://doi.org/10.1063/1.3610677
https://doi.org/10.1103/PhysRev.87.665
https://doi.org/10.1063/1.1388868
https://doi.org/10.1364/OE.27.010482
https://doi.org/10.1103/PhysRevLett.121.020402
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/PhysRevA.33.4033
https://doi.org/10.1103/PhysRevA.57.4736
https://doi.org/10.1103/PhysRevA.54.R4649
https://doi.org/10.1103/RevModPhys.52.341
https://doi.org/10.1103/PhysRevD.26.1817
https://doi.org/10.1103/PhysRev.128.2407
https://doi.org/10.1103/PhysRev.124.1646
https://doi.org/10.1103/PhysRev.160.1076
https://doi.org/10.1103/PhysRevLett.61.2442
https://doi.org/10.1103/PhysRevLett.61.2442
https://doi.org/10.1016/j.crhy.2016.07.012
https://doi.org/10.1103/PhysRevB.70.245306
https://doi.org/10.1103/PhysRevA.86.063802
https://doi.org/10.1103/PhysRevLett.93.250601
http://arxiv.org/abs/arXiv:1809.02195
https://aip.scitation.org/journal/jap


27K. Hepp and E. H. Lieb, “On the superradiant phase transition for molecules
in a quantized radiation field: The Dicke maser model,” Ann. Phys. 76, 360–404
(1973).
28H. J. Lipkin, N. Meshkov, and A. Glick, “Validity of many-body approxima-
tion methods for a solvable model: (I). Exact solutions and perturbation theory,”
Nucl. Phys. 62, 188–198 (1965).
29N. Meshkov, A. Glick, and H. Lipkin, “Validity of many-body approximation
methods for a solvable model: (II). Linearization procedures,” Nucl. Phys. 62,
199–210 (1965).
30A. Glick, H. Lipkin, and N. Meshkov, “Validity of many-body approximation
methods for a solvable model: (III). Diagram summations,” Nucl. Phys. 62,
211–224 (1965).
31S. Gammelmark and K. Mølmer, “Phase transitions and Heisenberg limited
metrology in an Ising chain interacting with a single-mode cavity field,” New
J. Phys. 13, 053035 (2011).
32M. Raghunandan, J. Wrachtrup, and H. Weimer, “High-density quantum
sensing with dissipative first order transitions,” Phys. Rev. Lett. 120, 150501
(2018).
33K. Rzażewski, K. Wódkiewicz, and W. Żakowicz, “Phase transitions, two-level
atoms, and the a 2 term,” Phys. Rev. Lett. 35, 432 (1975).
34I. Bialynicki-Birula and K. Rzaż̧ewski, “No-go theorem concerning the
superradiant phase transition in atomic systems,” Phys. Rev. A 19, 301–303
(1979).
35H. T. Quan, Z. Song, X. F. Liu, P. Zanardi, and C. P. Sun, “Decay of Loschmidt
echo enhanced by quantum criticality,” Phys. Rev. Lett. 96, 140604 (2006).
36M. Heyl, A. Polkovnikov, and S. Kehrein, “Dynamical quantum phase transi-
tions in the transverse-field Ising model,” Phys. Rev. Lett. 110, 135704 (2013).
37J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H. Kaplan,
A. V. Gorshkov, Z.-X. Gong, and C. Monroe, “Observation of a many-body
dynamical phase transition with a 53-qubit quantum simulator,” Nature 551,
601 (2017).
38H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler,
S. Choi, A. S. Zibrov, M. Endres, M. Greiner et al., “Probing many-body dynam-
ics on a 51-atom quantum simulator,” Nature 551, 579 (2017).
39R. Harris et al., “Phase transitions in a programmable quantum spin glass sim-
ulator,” Science 361, 162–165 (2018).
40P. Sikivie, “Experimental tests of the “invisible” axion,” Phys. Rev. Lett. 51,
1415–1417 (1983).
41I. Stern, A. Chisholm, J. Hoskins, P. Sikivie, N. Sullivan, D. Tanner, G. Carosi,
and K. van Bibber, “Cavity design for high-frequency axion dark matter detec-
tors,” Rev. Sci. Instrum. 86, 123305 (2015).
42K. Inomata, Z. Lin, K. Koshino, W. D. Oliver, J.-S. Tsai, T. Yamamoto, and
Y. Nakamura, “Single microwave-photon detector using an artificial λ-type three-
level system,” Nat. Commun. 7, 12303 (2016).
43S. Kono, K. Koshino, Y. Tabuchi, A. Noguchi, and Y. Nakamura, “Quantum
non-demolition detection of an itinerant microwave photon,” Nat. Phys. 14,
546–549 (2018).
44J.-C. Besse, S. Gasparinetti, M. C. Collodo, T. Walter, P. Kurpiers, M. Pechal,
C. Eichler, and A. Wallraff, “Single-shot quantum nondemolition detection of
individual itinerant microwave photons,” Phys. Rev. X 8, 021003 (2018).
45S. Sachdev, Quantum Phase Transitions (Wiley Online Library, 2007).
46C. Schuck, W. H. Pernice, and H. X. Tang, “Waveguide integrated low noise
NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci.
Rep. 3, 1893 (2013).
47B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo,
G. Crouch, A. Dane, T. Gerrits et al., “Demonstrating sub-3 ps temporal resolu-
tion in a superconducting nanowire single-photon detector,” e-print arXiv:1804.
06839 (2018).
48S. Jahani, L.-P. Yang, A. B. Tepole, J. C. Bardin, H. X. Tang, and Z. Jacob,
“Probabilistic vortex crossing criterion for superconducting nanowire single-
photon detectors,” e-print arXiv:1901.09291 (2019).
49L.-P. Yang and Z. Jacob, “Single photon detection using quantum phase transi-
tions,” e-print arXiv:1910.05866 (2019).

50S. M. Young, M. Sarovar, and F. Léonard, “Fundamental limits to single-
photon detection determined by quantum coherence and backaction,” Phys. Rev. A
97, 033836 (2018).
51L.-P. Yang, H. X. Tang, and Z. Jacob, “Concept of quantum timing jitter and
non-Markovian limits in single-photon detection,” Phys. Rev. A 97, 013833
(2018).
52L.-P. Yang, C. Khandekar, T. Li, and Z. Jacob, “Single-photon pulse induced
transient entanglement force,” e-print arXiv:1904.02796 (2019).
53V. S. Zapasskii, “Spin-noise spectroscopy: From proof of principle to applica-
tions,” Adv. Opt. Photonics. 5, 131–168 (2013).
54E. Lieb, T. Schultz, and D. Mattis, “Two soluble models of an antiferromag-
netic chain,” Ann. Phys. 16, 407–466 (1961).
55J. Hubbard, “Electron correlations in narrow energy bands,” Proc. R. Soc.
Lond. A 276, 238–257 (1963).
56S.-J. Gu, S.-S. Deng, Y.-Q. Li, and H.-Q. Lin, “Entanglement and quantum
phase transition in the extended Hubbard model,” Phys. Rev. Lett. 93, 086402
(2004).
57M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, “Boson
localization and the superfluid-insulator transition,” Phys. Rev. B 40, 546–570
(1989).
58Y. K. Wang and F. Hioe, “Phase transition in the Dicke model of superra-
diance,” Phys. Rev. A 7, 831 (1973).
59F. Hioe, “Phase transitions in some generalized Dicke models of superra-
diance,” Phys. Rev. A 8, 1440 (1973).
60K. Hepp and E. H. Lieb, “Equilibrium statistical mechanics of matter interact-
ing with the quantized radiation field,” Phys. Rev. A 8, 2517–2525 (1973).
61J. Dziarmaga, “Dynamics of a quantum phase transition and relaxation to a
steady state,” Adv. Phys. 59, 1063–1189 (2010).
62C. F. Lee and N. F. Johnson, “First-order superradiant phase transitions in a
multiqubit cavity system,” Phys. Rev. Lett. 93, 083001 (2004).
63Y.-N. Zhang, X.-W. Luo, G.-C. Guo, Z.-W. Zhou, and X. Zhou, “Quantum
phase transition of nonlocal Ising chain with transverse field in a resonator,”
Phys. Rev. B 90, 094510 (2014).
64A. A. Ovchinnikov, D. V. Dmitriev, V. Y. Krivnov, and V. O. Cheranovskii,
“Antiferromagnetic Ising chain in a mixed transverse and longitudinal magnetic
field,” Phys. Rev. B 68, 214406 (2003).
65M. H. S. Amin and V. Choi, “First-order quantum phase transition in adia-
batic quantum computation,” Phys. Rev. A 80, 062326 (2009).
66Y. Zhang, L. Yu, J.-Q. Liang, G. Chen, S. Jia, and F. Nori, “Quantum phases in
circuit QED with a superconducting qubit array,” Sci. Rep. 4, 4083 (2014).
67J. Vidal, R. Mosseri, and J. Dukelsky, “Entanglement in a first-order quantum
phase transition,” Phys. Rev. A 69, 054101 (2004).
68L. Del Re, M. Fabrizio, and E. Tosatti, “Nonequilibrium and nonhomogeneous
phenomena around a first-order quantum phase transition,” Phys. Rev. B 93,
125131 (2016).
69R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93,
99 (1954).
70J. Zhang, X. Peng, N. Rajendran, and D. Suter, “Detection of quantum critical
points by a probe qubit,” Phys. Rev. Lett. 100, 100501 (2008).
71J. Zhang, F. M. Cucchietti, C. M. Chandrashekar, M. Laforest, C. A. Ryan,
M. Ditty, A. Hubbard, J. K. Gamble, and R. Laflamme, “Direct observation of
quantum criticality in Ising spin chains,” Phys. Rev. A 79, 012305 (2009).
72P. Strack and S. Sachdev, “Dicke quantum spin glass of atoms and photons,”
Phys. Rev. Lett. 107, 277202 (2011).
73P. Nataf and C. Ciuti, “No-go theorem for superradiant quantum phase transi-
tions in cavity QED and counter-example in circuit QED,” Nat. Commun. 1, 72
(2010).
74J. Dziarmaga, “Dynamics of a quantum phase transition: Exact solution of the
quantum Ising model,” Phys. Rev. Lett. 95, 245701 (2005).
75W. H. Zurek, U. Dorner, and P. Zoller, “Dynamics of a quantum phase transi-
tion,” Phys. Rev. Lett. 95, 105701 (2005).
76C. Domb, The Critical Point: A Historical Introduction to the Modern Theory
of Critical Phenomena (CRC Press, 1996).

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 126, 174502 (2019); doi: 10.1063/1.5121558 126, 174502-24

Published under license by AIP Publishing.

https://doi.org/10.1016/0003-4916(73)90039-0
https://doi.org/10.1016/0029-5582(65)90862-X
https://doi.org/10.1016/0029-5582(65)90863-1
https://doi.org/10.1016/0029-5582(65)90864-3
https://doi.org/10.1088/1367-2630/13/5/053035
https://doi.org/10.1088/1367-2630/13/5/053035
https://doi.org/10.1103/PhysRevLett.120.150501
https://doi.org/10.1103/PhysRevLett.35.432
https://doi.org/10.1103/PhysRevA.19.301
https://doi.org/10.1103/PhysRevLett.96.140604
https://doi.org/10.1103/PhysRevLett.110.135704
https://doi.org/10.1038/nature24654
https://doi.org/10.1038/nature24622
https://doi.org/10.1126/science.aat2025
https://doi.org/10.1103/PhysRevLett.51.1415
https://doi.org/10.1063/1.4938164
https://doi.org/10.1038/ncomms12303
https://doi.org/10.1038/s41567-018-0066-3
https://doi.org/10.1103/PhysRevX.8.021003
https://doi.org/10.1038/srep01893
https://doi.org/10.1038/srep01893
http://arxiv.org/abs/arXiv:1804.06839
http://arxiv.org/abs/arXiv:1804.06839
http://arxiv.org/abs/arXiv:1901.09291
http://arxiv.org/abs/arXiv:1910.05866
https://doi.org/10.1103/PhysRevA.97.033836
https://doi.org/10.1103/PhysRevA.97.013833
http://arxiv.org/abs/arXiv:1904.02796
https://doi.org/10.1364/AOP.5.000131
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1103/PhysRevLett.93.086402
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevA.7.831
https://doi.org/10.1103/PhysRevA.8.1440
https://doi.org/10.1103/PhysRevA.8.2517
https://doi.org/10.1080/00018732.2010.514702
https://doi.org/10.1103/PhysRevLett.93.083001
https://doi.org/10.1103/PhysRevB.90.094510
https://doi.org/10.1103/PhysRevB.68.214406
https://doi.org/10.1103/PhysRevA.80.062326
https://doi.org/10.1038/srep04083
https://doi.org/10.1103/PhysRevA.69.054101
https://doi.org/10.1103/PhysRevB.93.125131
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRevLett.100.100501
https://doi.org/10.1103/PhysRevA.79.012305
https://doi.org/10.1103/PhysRevLett.107.277202
https://doi.org/10.1038/ncomms1069
https://doi.org/10.1103/PhysRevLett.95.245701
https://doi.org/10.1103/PhysRevLett.95.105701
https://aip.scitation.org/journal/jap


77P. Pfeuty, “The one-dimensional Ising model with a transverse field,”
Ann. Phys. 57, 79–90 (1970).
78C. Emary and T. Brandes, “Chaos and the quantum phase transition in the
Dicke model,” Phys. Rev. E 67, 066203 (2003).
79O. Castaños, R. López-Peña, J. G. Hirsch, and E. López-Moreno, “Classical
and quantum phase transitions in the Lipkin-Meshkov-Glick model,” Phys. Rev. B
74, 104118 (2006).
80P. Ribeiro, J. Vidal, and R. Mosseri, “Exact spectrum of the
Lipkin-Meshkov-Glick model in the thermodynamic limit and finite-size correc-
tions,” Phys. Rev. E 78, 021106 (2008).
81R. Botet and R. Jullien, “Large-size critical behavior of infinitely coordinated
systems,” Phys. Rev. B 28, 3955 (1983).
82S. Dusuel and J. Vidal, “Continuous unitary transformations and finite-size
scaling exponents in the Lipkin-Meshkov-Glick model,” Phys. Rev. B 71, 224420
(2005).
83J. Radcliffe, “Some properties of coherent spin states,” J. Phys. A Gen. Phys. 4,
313 (1971).
84F. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, “Atomic coherent states
in quantum optics,” Phys. Rev. A 6, 2211 (1972).
85F. Pan and J. Draayer, “Analytical solutions for the LMG model,” Phys. Lett. B
451, 1–10 (1999).
86J. Links, H.-Q. Zhou, R. H. McKenzie, and M. D. Gould, “Algebraic Bethe
Ansatz method for the exact calculation of energy spectra and form factors:
Applications to models of Bose–Einstein condensates and metallic nanograins,”
J. Phys. A Math. Gen. 36, R63 (2003).
87G. Ortiz, R. Somma, J. Dukelsky, and S. Rombouts, “Exactly-solvable
models derived from a generalized Gaudin algebra,” Nucl. Phys. B 707, 421–457
(2005).
88P. Ribeiro, J. Vidal, and R. Mosseri, “Thermodynamical limit
of the Lipkin-Meshkov-Glick model,” Phys. Rev. Lett. 99, 050402
(2007).
89J. Vidal, G. Palacios, and R. Mosseri, “Entanglement in a second-order
quantum phase transition,” Phys. Rev. A 69, 022107 (2004).
90J. Ma and X. Wang, “Fisher information and spin squeezing in the
Lipkin-Meshkov-Glick model,” Phys. Rev. A 80, 012318 (2009).
91J. Ma, X. Wang, C.-P. Sun, and F. Nori, “Quantum spin squeezing,” Phys. Rep.
509, 89–165 (2011).
92H. T. Quan, Z. D. Wang, and C. P. Sun, “Quantum critical dynamics of a
qubit coupled to an isotropic Lipkin-Meshkov-Glick bath,” Phys. Rev. A 76,
012104 (2007).
93H.-M. Kwok, W.-Q. Ning, S.-J. Gu, and H.-Q. Lin, “Quantum criticality of the
Lipkin-Meshkov-Glick model in terms of fidelity susceptibility,” Phys. Rev. E 78,
032103 (2008).
94Y.-H. Ma, S.-H. Su, and C.-P. Sun, “Quantum thermodynamic cycle with
quantum phase transition,” Phys. Rev. E 96, 022143 (2017).
95S. Morrison and A. S. Parkins, “Dynamical quantum phase transitions in the
dissipative Lipkin-Meshkov-Glick model with proposed realization in optical
cavity QED,” Phys. Rev. Lett. 100, 040403 (2008).
96J. E. Bunder and R. H. McKenzie, “Effect of disorder on quantum phase tran-
sitions in anisotropic xy spin chains in a transverse field,” Phys. Rev. B 60,
344–358 (1999).
97C. T. Lee, “q representation of the atomic coherent states and the origin of
fluctuations in superfluorescence,” Phys. Rev. A 30, 3308–3310 (1984).
98M. Kitagawa and M. Ueda, “Squeezed spin states,” Phys. Rev. A 47,
5138–5143 (1993).
99K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, “Dicke quantum
phase transition with a superfluid gas in an optical cavity,” Nature 464, 1301
(2010).
100F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael, “Proposed realiza-
tion of the Dicke-model quantum phase transition in an optical cavity QED
system,” Phys. Rev. A 75, 013804 (2007).
101A. Baksic, P. Nataf, and C. Ciuti, “Superradiant phase transitions with three-
level systems,” Phys. Rev. A 87, 023813 (2013).

102V. M. Bastidas, C. Emary, B. Regler, and T. Brandes, “Nonequilibrium
quantum phase transitions in the Dicke model,” Phys. Rev. Lett. 108, 043003
(2012).
103X.-Y. Lü, L.-L. Zheng, G.-L. Zhu, and Y. Wu, “Single-photon-triggered
quantum phase transition,” Phys. Rev. Appl. 9, 064006 (2018).
104Y. Imry, “Finite-size rounding of a first-order phase transition,” Phys. Rev. B
21, 2042 (1980).
105H. Yuen, “States that give the maximum signal-to-quantum noise ratio for a
fixed energy,” Phys. Lett. A 56, 105–106 (1976).
106R. A. Jalabert and H. M. Pastawski, “Environment-independent decoherence
rate in classically chaotic systems,” Phys. Rev. Lett. 86, 2490–2493 (2001).
107Z. P. Karkuszewski, C. Jarzynski, and W. H. Zurek, “Quantum chaotic envi-
ronments, the butterfly effect, and decoherence,” Phys. Rev. Lett. 89, 170405
(2002).
108F. M. Cucchietti, D. A. R. Dalvit, J. P. Paz, and W. H. Zurek, “Decoherence
and the Loschmidt echo,” Phys. Rev. Lett. 91, 210403 (2003).
109M. Heyl, “Dynamical quantum phase transitions: A review,” Rep. Prog. Phys.
81, 054001 (2018).
110P. Jurcevic, H. Shen, P. Hauke, C. Maier, T. Brydges, C. Hempel,
B. P. Lanyon, M. Heyl, R. Blatt, and C. F. Roos, “Direct observation of dynamical
quantum phase transitions in an interacting many-body system,” Phys. Rev. Lett.
119, 080501 (2017).
111H. Labuhn, D. Barredo, S. Ravets, S. De Léséleuc, T. Macrì, T. Lahaye, and
A. Browaeys, “Tunable two-dimensional arrays of single Rydberg atoms for real-
izing quantum Ising models,” Nature 534, 667 (2016).
112T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A. Coish,
M. Harlander, W. Hänsel, M. Hennrich, and R. Blatt, “14-qubit entanglement:
Creation and coherence,” Phys. Rev. Lett. 106, 130506 (2011).
113R. Islam, C. Senko, W. Campbell, S. Korenblit, J. Smith, A. Lee, E. Edwards,
C.-C. Wang, J. Freericks, and C. Monroe, “Emergence and frustration of magne-
tism with variable-range interactions in a quantum simulator,” Science 340,
583–587 (2013).
114C. Song, K. Xu, W. Liu, C.-p. Yang, S.-B. Zheng, H. Deng, Q. Xie, K. Huang,
Q. Guo, L. Zhang, P. Zhang, D. Xu, D. Zheng, X. Zhu, H. Wang, Y.-A. Chen,
C.-Y. Lu, S. Han, and J.-W. Pan, “10-qubit entanglement and parallel
logic operations with a superconducting circuit,” Phys. Rev. Lett. 119, 180511
(2017).
115V. Makhalov, T. Satoor, A. Evrard, T. Chalopin, R. Lopes, and
S. Nascimbene, “Probing quantum criticality and symmetry breaking at the
microscopic level,” e-print arXiv:1905.00807 (2019).
116A. Browaeys, D. Barredo, and T. Lahaye, “Experimental investigations of
dipole–dipole interactions between a few Rydberg atoms,” J. Phys. B 49, 152001
(2016).
117K. Mølmer and A. Sørensen, “Multiparticle entanglement of hot trapped
ions,” Phys. Rev. Lett. 82, 1835–1838 (1999).
118A. M. van den Brink, A. Berkley, and M. Yalowsky, “Mediated tunable cou-
pling of flux qubits,” New. J. Phys. 7, 230 (2005).
119S. Morrison and A. S. Parkins, “Collective spin systems in dispersive optical
cavity QED: Quantum phase transitions and entanglement,” Phys. Rev. A 77,
043810 (2008).
120G. Chen, J.-Q. Liang, and S. Jia, “Interaction-induced Lipkin-Meshkov-Glick
model in a Bose-Einstein condensate inside an optical cavity,” Opt. Express 17,
19682–19690 (2009).
121J. Larson, “Circuit QED scheme for the realization of the
Lipkin-Meshkov-Glick model,” Europhys. Lett. 90, 54001 (2010).
122R. G. Unanyan and M. Fleischhauer, “Decoherence-free generation of many-
particle entanglement by adiabatic ground-state transitions,” Phys. Rev. Lett. 90,
133601 (2003).
123A. Sørensen and K. Mølmer, “Quantum computation with ions in thermal
motion,” Phys. Rev. Lett. 82, 1971–1974 (1999).
124M. A. Norcia, R. J. Lewis-Swan, J. R. K. Cline, B. Zhu, A. M. Rey, and
J. K. Thompson, “Cavity-mediated collective spin-exchange interactions in a
strontium superradiant laser,” Science 361, 259–262 (2018).

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 126, 174502 (2019); doi: 10.1063/1.5121558 126, 174502-25

Published under license by AIP Publishing.

https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1103/PhysRevE.67.066203
https://doi.org/10.1103/PhysRevB.74.104118
https://doi.org/10.1103/PhysRevE.78.021106
https://doi.org/10.1103/PhysRevB.28.3955
https://doi.org/10.1103/PhysRevB.71.224420
https://doi.org/10.1088/0305-4470/4/3/009
https://doi.org/10.1103/PhysRevA.6.2211
https://doi.org/10.1016/S0370-2693(99)00191-4
https://doi.org/10.1088/0305-4470/36/19/201
https://doi.org/10.1016/j.nuclphysb.2004.11.008
https://doi.org/10.1103/PhysRevLett.99.050402
https://doi.org/10.1103/PhysRevA.69.022107
https://doi.org/10.1103/PhysRevA.80.012318
https://doi.org/10.1016/j.physrep.2011.08.003
https://doi.org/10.1103/PhysRevA.76.012104
https://doi.org/10.1103/PhysRevE.78.032103
https://doi.org/10.1103/PhysRevE.96.022143
https://doi.org/10.1103/PhysRevLett.100.040403
https://doi.org/10.1103/PhysRevB.60.344
https://doi.org/10.1103/PhysRevA.30.3308
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1038/nature09009
https://doi.org/10.1103/PhysRevA.75.013804
https://doi.org/10.1103/PhysRevA.87.023813
https://doi.org/10.1103/PhysRevLett.108.043003
https://doi.org/10.1103/PhysRevApplied.9.064006
https://doi.org/10.1103/PhysRevB.21.2042
https://doi.org/10.1016/0375-9601(76)90160-2
https://doi.org/10.1103/PhysRevLett.86.2490
https://doi.org/10.1103/PhysRevLett.89.170405
https://doi.org/10.1103/PhysRevLett.91.210403
https://doi.org/10.1088/1361-6633/aaaf9a
https://doi.org/10.1103/PhysRevLett.119.080501
https://doi.org/10.1038/nature18274
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1126/science.1232296
https://doi.org/10.1103/PhysRevLett.119.180511
http://arxiv.org/abs/arXiv:1905.00807
https://doi.org/10.1088/0953-4075/49/15/152001
https://doi.org/10.1103/PhysRevLett.82.1835
https://doi.org/10.1088/1367-2630/7/1/230
https://doi.org/10.1103/PhysRevA.77.043810
https://doi.org/10.1364/OE.17.019682
https://doi.org/10.1209/0295-5075/90/54001
https://doi.org/10.1103/PhysRevLett.90.133601
https://doi.org/10.1103/PhysRevLett.82.1971
https://doi.org/10.1126/science.aar3102
https://aip.scitation.org/journal/jap


125M. Dalmonte, S. I. Mirzaei, P. R. Muppalla, D. Marcos, P. Zoller, and
G. Kirchmair, “Realizing dipolar spin models with arrays of superconducting
qubits,” Phys. Rev. B 92, 174507 (2015).
126S. de Léséleuc, D. Barredo, V. Lienhard, A. Browaeys, and T. Lahaye, “Optical
control of the resonant dipole-dipole interaction between Rydberg atoms,” Phys.
Rev. Lett. 119, 053202 (2017).

127A. A. Houck, H. E. Türeci, and J. Koch, “On-chip quantum simulation with
superconducting circuits,” Nat. Phys. 8, 292 (2012).
128M. Endres, H. Bernien, A. Keesling, H. Levine, E. R. Anschuetz,
A. Krajenbrink, C. Senko, V. Vuletic, M. Greiner, and M. D. Lukin,
“Atom-by-atom assembly of defect-free one-dimensional cold atom arrays,”
Science 354, 1024–1027 (2016).

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 126, 174502 (2019); doi: 10.1063/1.5121558 126, 174502-26

Published under license by AIP Publishing.

https://doi.org/10.1103/PhysRevB.92.174507
https://doi.org/10.1103/PhysRevLett.119.053202
https://doi.org/10.1103/PhysRevLett.119.053202
https://doi.org/10.1038/nphys2251
https://doi.org/10.1126/science.aah3752
https://aip.scitation.org/journal/jap

	Engineering first-order quantum phase transitions for weak signal detection
	I. INTRODUCTION
	II. QUANTUM CRITICAL DETECTOR
	A. Quantum critical amplification scheme
	B. Macroscopic output signal
	C. Essential role of the first-order quantum phase transition

	III. MODEL HAMILTONIAN FOR THE QUANTUM CRITICAL DETECTOR
	IV. PHASE DIAGRAM OF DETECTOR VIA MEAN-FIELD THEORY
	A. Order parameters
	B. Mean-field theory

	V. QUANTUM PHASE TRANSITIONS AND GROUND-STATE PROPERTIES OF THE DETECTOR
	A. LMG model
	B. Dicke-LMGx model
	C. Dicke-LMGy model

	VI. DYNAMICAL QUANTUM CRITICAL AMPLIFICATION
	A. Amplification via first-order quantum phase transition
	B. Time dynamics of the wave function

	VII. EXPERIMENTAL IMPLEMENTATION
	VIII. SUMMARY
	1. Eigenstate spectrum and ground-state properties
	2. Dynamics in the Hilbert space
	3. Dynamics in the Louville space
	a. Single-body system
	b. Multibody system

	References


