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Optical N-invariant of graphene’s topological
viscous Hall fluid
Todd Van Mechelen 1, Wenbo Sun 1 & Zubin Jacob 1✉

Over the past three decades, graphene has become the prototypical platform for discovering

topological phases of matter. Both the Chern C 2 Z and quantum spin Hall υ 2 Z2 insulators

were first predicted in graphene, which led to a veritable explosion of research in topological

materials. We introduce a new topological classification of two-dimensional matter – the

optical N-phases N 2 Z. This topological quantum number is connected to polarization

transport and captured solely by the spatiotemporal dispersion of the susceptibility tensor χ.

We verify N≠ 0 in graphene with the underlying physical mechanism being repulsive Hall

viscosity. An experimental probe, evanescent magneto-optic Kerr effect (e-MOKE) spec-

troscopy, is proposed to explore the N-invariant. We also develop topological circulators by

exploiting gapless edge plasmons that are immune to back-scattering and navigate sharp

defects with impunity. Our work indicates that graphene with repulsive Hall viscosity is the

first candidate material for a topological electromagnetic phase of matter.

https://doi.org/10.1038/s41467-021-25097-2 OPEN

1 School of Electrical and Computer Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA. ✉email: zjacob@purdue.edu

NATURE COMMUNICATIONS |         (2021) 12:4729 | https://doi.org/10.1038/s41467-021-25097-2 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25097-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25097-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25097-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25097-2&domain=pdf
http://orcid.org/0000-0002-1414-6065
http://orcid.org/0000-0002-1414-6065
http://orcid.org/0000-0002-1414-6065
http://orcid.org/0000-0002-1414-6065
http://orcid.org/0000-0002-1414-6065
http://orcid.org/0000-0003-3578-9868
http://orcid.org/0000-0003-3578-9868
http://orcid.org/0000-0003-3578-9868
http://orcid.org/0000-0003-3578-9868
http://orcid.org/0000-0003-3578-9868
http://orcid.org/0000-0002-5602-1412
http://orcid.org/0000-0002-5602-1412
http://orcid.org/0000-0002-5602-1412
http://orcid.org/0000-0002-5602-1412
http://orcid.org/0000-0002-5602-1412
mailto:zjacob@purdue.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Monolayer graphene forms the canonical system to study
two-dimensional (2D) topological phases of matter.
The now famous Haldane model of graphene1, with

time-reversal breaking next-nearest-neighbor (NNN) hopping,
was the first proposal of a Chern phase C 2 Z and a nontrivial
TKNN invariant2. Conversely, the Kane-Mele model3 preserves
time-reversal symmetry and was the first example of a quantum
spin Hall phase υ 2 Z2, resulting from spin–orbit coupling in
graphene. Nevertheless, the growing collection of topological
phases in condensed matter can be categorized under the
umbrella of electrostatics since all observables, e.g., the quantum
Hall σxy= Ce2/h and spin Hall σsxy ¼ υe=2π conductivity, are
interpreted at zero photon energy and momentum ω= q= 0.
One must go beyond this paradigm to characterize the optical
properties of matter, as these are defined for electromagnetic
fluctuations over all frequencies ω ≠ 0 and momenta q ≠ 0. We are
quickly confronted with two important questions: what are the
optical invariants of a material? Do these topological invariants
represent unique electromagnetic phases of matter? Our work
lays the foundations for this optical classification of condensed
matter.

In this paper, we present graphene imbued with Hall viscosity
as a paradigmatic example of a topological electromagnetic phase
of matter. Please see Fig. 1 and Table 1 comparing the funda-
mental differences between the Chern phase, quantum spin Hall
phase and the optical N-phase. This nontrivial topology is
revealed in the magnetohydrodynamics of the 2D Navier–Stokes
equations. Until quite recently however, viscous electro-
hydrodynamics with nonzero magnetic field B ≠ 0 has been
experimentally inaccessible, mainly due to impurities and
electron–phonon scattering4. Exceptional grade 2D materials like
graphene5,6 are providing the first platforms to study the fluidic
behavior of electrons7–9.

Hall viscosity ηH, the dissipationless component of the viscous
stress tensor10–14, is a generic feature of parity and time-reversal
breaking electron fluids and can exhibit quantization analogous to
the Hall conductivity15–17. It is challenging to measure with
conventional techniques but multiple possible observables have
been proposed to identify Hall viscosity experimentally, such as
negative nonlocal resistance18,19 and anomalous Hall
resistivity20,21. Quantization of orbital spin22 and the Wen-Zee
shift23 represent unique topological numbers of these quantum
fluids, which are associated with nontrivial electronic states.
Nevertheless, most studies on Hall viscosity have focused on the
steady state properties of the material—the optical attributes of

the viscous Hall fluid have remained almost completely
unexplored24–26. We show that the magnetohydrodynamic
response of Hall viscosity gives rise to novel topological phe-
nomena for electromagnetic waves, only manifested in the optical
regime.

We show that an optical phase N 2 Z is characterized by the
winding number of the susceptibility tensor χ and intimately
related to polarization transport. This topological quantum
number is homotopy invariant and found by integrating the
material response over all Matsubara frequencies and wavevectors
of light. We emphasize that the optical N-invariant is distinct
from the TKNN invariant, and the first topological quantity
that captures the winding in the longitudinal and transverse
response functions. Using the f-sum rule, we prove that N is
generically quantized and immune to perturbations in the optical
response. Our definition utilizes a Volovik (Green’s function)
formalism27–29, which is naturally generalized to quantum, dis-
sipative and finite temperature systems30. Although we only
consider the continuum theory here, the formalism is robust and
easily extended to the lattice case. We argue that N is the central
topological quantity of the electromagnetic linear response theory
and classifies all 2D optical media with broken time-reversal
symmetry.

We discover that the optical N-invariant encodes the vorticity
of spin-1 Néel-type skyrmions in the bulk magnetoplasma. This
opens the door to experimentally measure the N-invariant
through a unique magnetic field repulsion reminiscent of the
Meissner effect. To probe this deep subwavelength phenomenon,
we propose evanescent magneto-optic Kerr effect (e-MOKE)
spectroscopy. The angle-resolved Kerr rotation is a direct obser-
vable of the skyrmion vorticity and optical N-invariant. Lastly, we
study the topologically-protected gapless edge states emerging at
the boundary of the viscous Hall fluid and vacuum. We
demonstrate robust chiral propagation around sharp defects
along with back-scatter immunity which we exploit for ultra-
subwavelength topological circulators.

Our work unifies the fields of topological photonics and con-
densed matter physics to spawn a novel area of research in
materials science. Although topological photonics31–34 has
mainly focused on artificial media like photonic crystals35–37 and
metamaterials38, our findings demonstrate that condensed matter
can also host topological electromagnetic states. As such, the
optical phases we discuss here are microscopic properties of
matter and are not related to macroscopic engineering. The
optical invariant N 2 Z is therefore a classification of different

Fig. 1 Topological phases of graphene. a The Chern phase C 2 Z arises from complex next-nearest-neighbor (NNN) hopping and is related to charge
transport. b The quantum spin Hall phase υ 2 Z2, also known as the 2D topological insulator, is due to spin–orbit coupling and leads to nontrivial spin
transport. c The optical phase N 2 Z we put forth in this paper is a consequence of repulsive Hall viscosity and connected to polarization transport. These
three phases can be identified as the Chern insulator, quantum spin Hall insulator and viscous Hall insulator, respectively.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25097-2

2 NATURE COMMUNICATIONS |         (2021) 12:4729 | https://doi.org/10.1038/s41467-021-25097-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


topological phases of matter. In previous photonics systems, Hall
viscosity has been absent and therefore are optically trivial N= 0.
Graphene’s viscous Hall fluid is the first candidate for a nontrivial
phase N ≠ 0 and a paradigm shift in optical materials. We note
that the optical N-invariant captures universal physics beyond
graphene and sheds new light on topological superconductors39,
fractional quantum Hall fluids40, Chern insulators41, Weyl
semimetals42, and superfluids43.

Results
Dynamics of the viscous Hall fluid. Our starting point is the 2D
Navier–Stokes (NS) equations subject to a uniform magnetic field
B and a spatiotemporally varying electric field E(t, r). The 2D NS
equations describe the viscous flow of a parity and time-reversal
breaking Hall fluid in Fermi-liquid theory. This theory has suc-
cessfully explained the experimentally observed steady state
properties of graphene4. On the other hand, our analysis focuses
on the dynamical time-dependent behavior. Viscosity char-
acterizes the resistance to deformation and amounts to a restoring
force in the NS equations. The conventional shear viscosity η is
dissipative and impedes the motion of the fluid. Hall viscosity ηH
however, is dissipationless and generates a force perpendicular to
the motion. Assuming the electric field fluctuations are relatively
weak, the charge density ρ= ρ0+ δρ will be perturbed around its
equilibrium value ρ0=−en0, where e is the elementary charge
and n0 is the electron density. We derive the linearized time-
dependent NS equations, which incorporates acceleration ∂tJ ≠ 0
and compressibility ∇ ⋅ J ≠ 0 of the Hall fluid,

∂tJ ¼ �v2s∇ρ� ðγ� ν∇2ÞJ� ðωc þ νH∇2ÞJ ´ ẑ þ e2n0
m

E: ð1Þ

E represents the parallel electric field at the location of the elec-
tron fluid z= 0. The full derivation is provided in Supplementary
Note 2. Combining Eq. (1) with the continuity equation ∂tρ+∇ ⋅
J= 0 completely specifies the charge ρ and current J densities
with appropriate boundary conditions. The speed of sound is
vs ’ vF=

ffiffiffi
2

p
and we have assumed Dirac dispersion characteristic

of graphene44 to obtain the proportionality of vs to the Fermi
velocity vF. Here, γ= τ−1 is the phenomenological damping rate
characterizing momentum-non-conserving collisions and ωc=
eB/(mc) is the cyclotron frequency. m is the effective mass of the
electron and c is the speed of light. The kinetic shear and kinetic
Hall viscosities are given by ν= η/(mn0) and νH= ηH/(mn0),
respectively. We can also define three important length scales: the
shear Dν ¼ ffiffiffiffiffi

ντ
p

and Hall DH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jνH=ωcj

p
diffusion lengths, as

well as the cyclotron radius rc= ∣vs/ωc∣, which characterize the
hydrodynamic behavior at mesoscopic scales. The relative sign of
νH with respect to ωc is paramount to the topological physics and
dictates whether Hall viscosity repels or reinforces the magnetic

field. Optical N-phases and nontrivial electromagnetic states
emerge in the repulsive regime ωcνH > 0.

Magnetohydrodynamic susceptibility. We now derive the bulk
linear response theory (LRT) of an unbounded viscous Hall fluid,
specifically in the ultra-subwavelength regime. Assuming trans-
lational symmetry in the r= (x, y) plane, the in-plane momentum
q= (qx, qy) is conserved which means we can Fourier transform
to the reciprocal space. Due to nonlocality arising from pressure
vs ≠ 0 and viscosity ν ≠ 0, the momentum space is particularly
useful to understand the LRT. To facilitate this, we utilize the
susceptibility tensor χ,

Pðω; qÞ ¼ χðω; qÞ � Eðω; qÞ; ð2Þ
which gives the induced polarization density P to an applied
electric field E. The response function χ completely characterizes
the bulk optical properties of the material, for every energy ω and
momentum q of the photon. Note that both ω and q are real
parameters here. Exploiting rotational symmetry, we derive the
components of the susceptibility tensor in an orthogonal basis,

χij ¼ χTðδij � q̂iq̂jÞ þ χLq̂iq̂j þ igϵij; ð3Þ
where q̂i ¼ qi=q is the unit vector directed along the in-plane
momentum and q ¼ ffiffiffiffiffiffiffiffiffi

q � qp
is its magnitude. δij is the identity

and ϵij is the 2D Levi-Civita symbol. In traditional LRT (q ≈ 0),
this crucial distinction between longitudinal and transverse
response functions is ignored. However, the optical N-invariant
captures the deep subwavelength topology of matter and requires
both the current–current (transverse) and density–density
(longitudinal) response. The transverse χT and longitudinal χL

response functions can be identified in the induced polarization
using a transverse q ⋅ E= 0 and longitudinal q × E= 0 electric
field respectively. Gyrotropy g couples these two components.

Note, the response function is temporally dispersive (ω
dependent) as well as spatially dispersive (q dependent), and
both properties are essential to realize optical N-phases. Temporal
dispersion quantifies the degrees of freedom of the electronic
excitations, while spatial dispersion characterizes the geometric
phase of the induced polarization. We decompose the compo-
nents of χ into its transverse χT,

χT ¼ � e2n0
m

1
ω~ω

1þ ωΩ2
ceωðωeω� v2sq
2Þ � ωΩ2

c

� �
; ð4aÞ

longitudinal χL,

χL ¼ � e2n0
m

~ωeωðωeω� v2sq
2Þ � ωΩ2

c

; ð4bÞ

and gyrotropic g response,

g ¼ e2n0
m

Ωceωðωeω� v2sq
2Þ � ωΩ2

c

: ð4cÞ

~ω ¼ ωþ iΓ is the shifted energy, where Γ(q)= γ+ νq2 is the
viscous damping rate that describes the decay pathways. Ωc(q) is
the viscous cyclotron frequency,

ΩcðqÞ ¼ ωc � νHq
2: ð5Þ

Due to Hall viscosity νH, the effective magnetic field in the
Hall fluid is momentum dependent Beff ðqÞ ¼ mcΩcðqÞ=e ¼
Bð1� D2

Hq
2Þ and varies on the scale of the Hall diffusion length

DH. In the dissipationless (Hermitian) limit Γ→ 0, we obtain the
LRT of an ideal quantum Hall fluid χ= χ†.

Lastly, we verify that the susceptibility tensor satisfies the
reality condition,

χðω; qÞ ¼ χ�ð�ω;�qÞ; ð6Þ

Table 1 Summary of the 2+1D topological phases in
graphene.

Phase Chern Spin Hall Optical

Quanta Charge Spin Polarization
Class A AII D
Invariant C 2 Z υ 2 Z2 N 2 Z
Mechanism Complex NNN

hopping
Spin–orbit
coupling

Repulsive Hall
viscosity

Observable σxy= Ce2/h σsxy ¼ υe=2π Cyclotron null
EM field ω= q= 0 ω= q= 0 ω≠ q≠ 0

The Chern C and spin Hall υ phases are defined at zero photon energy and momentum ω= q=
0. The optical N-phases are defined for dynamical electromagnetic (EM) fields ω≠ q≠ 0.
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since electromagnetism is a real-valued vector field theory. Due to
Eq. (6), the components of χ cannot be completely independent,
implying the excitations belong to universality class D, the same
symmetry class as topological superconductors45. This should be
contrasted with the electron, which belongs to symmetry class A,
or class AII in the presence of time-reversal symmetry. Particle
number is conserved in the complex fermionic classes due to U(1)
symmetry, but this is not true for the bosonic classes since the
excitations are their own antiparticle. Generically, the spatiotem-
porally dispersive susceptibility tensor χ(ω, q) represents a
mapping from the 2+ 1D momentum space to the general real
linear group GLnðRÞ. n denotes the degrees of freedom—i.e., the
total n × n matrix dimension of χ.

Optical N-invariant. The susceptibility tensor χ is precisely the
Green’s function of the polarization density P and is therefore a
topological object. The cornerstone of the Green’s function
approach developed by Volovik27–29, lies the following 2+ 1D
topological invariant,

N ¼ ϵαβγ

24π2

Z
dΩdq tr χ

∂χ�1

∂qα
χ
∂χ�1

∂qβ
χ
∂χ�1

∂qγ

" #
; ð7Þ

where χ(ω, q)→ χ(Ω, q) is parameterized by the complex fre-
quency variable ω→Ω. In this case, ∂α indicates partial deriva-
tives with respect to the total momentum coordinate qα= (Ω, q)
and tr denotes the trace over the tensor indices of χ. Note that the
temporal integral dΩ is performed vertically over all imaginary
(Matsubara) frequencies46,

Ω 2 ðω� i1;ωþ i1Þ: ð8Þ
ω=ℜ(Ω) is the photon energy that is assumed to lie within the
electronic band gap 0 < ℏω < Ebg. Bulk current cannot be gener-
ated since the photon does not possess sufficient energy to sti-
mulate a transition – it can only polarize the material. With
parabolic dispersion (2ωcνH<v

2
s ), the band gap of an ideal

quantum Hall fluid is defined by the first Landau level (Ebg=
ℏ∣Ωc(0)∣= ℏ∣ωc∣). A plot of the contour integral is shown in
Fig. 2b.

Equations (7) and (8) clearly highlight the differences from the
Chern number (TKNN invariant) and previous theories in
the field of topological photonics. We reiterate that the optical
N-invariant is fundamentally different than the electronic Chern
number as they describe physically distinct quantities. The Chern

number C is related to the U(1) Berry phase of the wave function
ψ. On the other hand, the N-invariant quantifies the spectral
asymmetry in the susceptibility tensor χ. Accordingly, the Chern
number C characterizes the topology of the bulk electronic band
structure while the N-invariant characterizes the topology of the
bulk polaritonic band structure25,26. These are plasmons for the
quantum Hall fluid, but all dipole-carrying excitations such as
excitons, phonons, magnons, and Cooper-pairs47 can be
accounted for in our theory.

To prove N is a quantized topological invariant, we consult a
few fundamental properties of the response function. Every solid
is transparent at ∣Ω∣→∞ since all electrons respond as free
particles to rapidly varying temporal oscillations. The suscept-
ibility tensor approaches a purely diamagnetic response which is
independent of q and nonsingular det χ ≠ 0,

lim
jΩj!1

χijðΩ; qÞ ! � e2n0
mΩ2 δij: ð9Þ

This is a universal property of optical materials and ultimately a
consequence of the f-sum rule, also known as the optical,
conductivity, or Thomas-Reiche-Kuhn (TRK) sum rule48. The
f-sum rule guarantees that our contours in the complex frequency
plane are nondegenerate which is essential for homotopy
invariance29,46. The detailed proof is presented in Supplementary
Note 3. By including the point at infinity (∣Ω∣=∞), each contour
in Eq. (8) defines a circle S1 in the extended complex plane.
Moreover, due to viscosity, the susceptibility tensor is naturally
regularized and approaches a directionally independent value as
q→∞,

lim
q!1

χðΩ; qÞ ! χðΩ; qÞ: ð10Þ

Again, by including the point at infinity (q=∞), the q space is
topologically equivalent to the sphere S2. The combined 2 + 1D
momentum space is compactified and effectively S2 × S1. A
visualization of this manifold is depicted in Fig. 2a. The
susceptibility tensor χ(Ω, q) is therefore an element of the third
homotopy group of GLnðRÞ,

π3½GLnðRÞ� ¼ Z; ð11Þ
which is isomorphic to Z. Equation (11) epitomizes the crucial
fact that the optical N-invariant is universal and model-
independent. The integral in Eq. (7) calculates the precise
element of N 2 Z the response function corresponds to, where

Fig. 2 Visualization of the 2 + 1D momentum space in the continuum limit. a Due to regularization from viscosity, the q space is equivalent to the sphere
R2 ’ S2 as all paths at q=∞ are compactified into a single point. Likewise, the f-sum rule ensures imaginary contours in Ω space are compactified to a
circle R ’ S1. The product of these two spaces S2 × S1 is a 2 + 1D manifold without boundary. b Contour in the complex frequency plane used to evaluate
the optical N-invariant. Integration is performed vertically Ω∈ (ω− i∞,ω+ i∞) over all Matsubara frequencies. ω=ℜ(Ω) is the photon energy that lies
within the electronic band gap 0 <ω < ∣ωc∣. c Optical invariant N(ω) as a function of the photon energy ω. The N-invariant is calculated for damped, low-
loss, and quantum Hall fluids in the nontrivial repulsive regime ωcνH > 0. In the dissipationless limit Γ= 0, the optical invariant is quantized to ∣N∣= 2 within
the entire band gap.
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each integer represents a unique optical phase. This should be
contrasted with the generalized TKNN invariant C, which is
characterized by complex fields π3½GLnðCÞ� ¼ Z. We stress that
although both N and C are integer invariants, the symmetry
classes are fundamentally different.

Optical N-invariant of the viscous Hall fluid. We verify that
graphene’s viscous Hall fluid is the first candidate material for a
topological electromagnetic phase of matter. Specifically, it has
nontrivial optical invariant (N ≠ 0) when Hall viscosity is repul-
sive ωcνH > 0. Utilizing the magnetohydrodynamic theory
[Eq. (4)] and the homotopy equation [Eq. (7)] we arrive at,

N ¼
Z

dΩdq
i2π2

v4sq
2

Ω

½Ωðωc þ νHq
2Þ þ iðγνH þ ωcνÞq2�

½~ΩðΩ~Ω� v2sq
2Þ � ΩΩ2

c �
2 ; ð12Þ

where ~Ω ¼ Ωþ iΓ and the sign of the dissipation is implied Γ !
sgn½=ðΩÞ�Γ to preserve causality. We integrate Eq. (12) numeri-
cally in Fig. 2c but it is important to confirm that N is quantized
in the zero temperature quantum limit Γ→ 0. Integrating over
all Matsubara frequencies and wavevectors, we acquire the optical
N-invariant of the viscous Hall fluid,

N ¼ sgnðωcÞ þ sgnðνHÞ: ð13Þ
The invariant is quantized to N= ±2 when Hall viscosity is
repulsive ωcνH > 0 and trivial N= 0 for ωcνH < 0. We note that the
definition of N through the homotopy group [Eq. (7)] is robust
and does not rely on any symmetries of the NS theory such as
Galilean invariance and frequency-momentum independence in
the viscosity coefficients. Thus, the N-invariant can be immedi-
ately generalized beyond graphene to more exotic materials; for
instance the magneto-roton excitations in fractional quantum
Hall fluids24,49.

e-MOKE spectroscopy and skyrmion texture. Here we put forth
an experimental probe of the optical N-invariant. The N-invariant
encodes a peculiar vorticity in the bulk magnetoplasmons (BMPs)
that arises from repulsive Hall viscosity (ωcνH > 0). We prove
these are spin-1 skyrmions50 carrying deep subwavelength texture
of the optical N-invariant. The fundamental reason why they are
spin-1 is because electromagnetism is a vector field theory so spin
arises from the circular polarization state of P. The self-consistent
solutions of Poisson’s equation and the NS equations [Eq. (1)]
produces the BMP dispersion ω= ωb(q). A short review is pro-
vided in the Supplementary Note 5. At low q, we obtain the
characteristic square root dispersion (

ffiffiffi
q

p
) of a BMP which is

generated from the long-range Coulomb interaction. However,
the hydrodynamic behavior dominates at high q and is the origin
of topologically nontrivial electromagnetic states.

Although BMPs in quantum Hall fluids have been studied for
many years, the effect Hall viscosity has on dynamical variables
like the angular momentum (AM) has never been considered.
From first principles electrodynamics, we derive the energy
density uq and AM density mq in the bulk momentum space. The
ratio of these two quantities gives the AM jz per unit energy ωb of
the BMP,

mq

uq
¼ � ∂g

∂ω

�
∂ðωχLÞ
∂ω

� �
ω¼ωb

¼ jz
ωb

: ð14aÞ

jz is the AM of a spin-1 Néel-type skyrmion51 which varies
dynamically with the momentum q,

jz ¼ Ωc

ωb

2ω2
b þ Ω2

p

2ω2
b � Ω2

p

 !
: ð14bÞ

Ωp being the effective plasma frequency. As a consequence of

rotational symmetry, the skyrmion number is determined by the
difference in AM eigenvalues Δjz at the rotationally invariant
momentum q= 0 and q=∞. The eigenvalues must be integers
jz= ±1 or 0 at these points due to the spin-1 representation25. For
the BMP we obtain,

Δjz ¼ jzð0Þ � jzð1Þ ¼ sgnðωcÞ þ sgnðνHÞ: ð15Þ
Notice that the AM flips direction giving ∣Δjz∣= 2 in the repulsive
regime ωcνH > 0—the signature of a topologically nontrivial
skyrmion. Indeed, the skyrmion winding number is exactly equal
to the optical N-invariant derived in Eq. (13),

N ¼ Δjz: ð16Þ
It should be noted that Eq. (16) only holds in the presence of
rotational symmetry, nonetheless the quantization of N remains
robust even without symmetry [Eq. (11)]. In this case, the
N-invariant is solely determined by the jz eigenvalues at high-
symmetry points q= 0 and q=∞ which does not rely on the
specific physical model of Hall viscosity. The dynamical skyrmion
texture encodes a “knot” in the polarization density that cannot
be undone through any continuous deformation. The AM texture
jz(q) as a function of the in-plane momentum q is depicted in
Fig. 3e.

As can be seen directly from Fig. 3e, the optical N-invariant
and skyrmion number is only nontrivial (N= Δjz ≠ 0) when the
viscous cyclotron frequency changes sign [Eq. (5)]. We define this
phenomenon as the cyclotron null (Ωc(q)= 0) which occurs at a
particular in-plane momentum q ¼ D�1

H and cannot be removed
unless there is a topological phase transition. q ¼ D�1

H is the
momentum where the effective magnetic field is completely
expelled from the fluid (Beff(q)= 0) and is unique to the
nontrivial repulsive regime ωcνH > 0. At the null, the cyclotron
motion switches handedness and the circulating currents appear
to rotate in the opposite direction. This interesting phenomenon
is reminiscent of the Meissner effect in a superconductor, that
causes all magnetic fields to be expelled from the electron fluid.
The difference is that the cyclotron null Ωc(q)= 0 is a deep
subwavelength effect as it is a consequence of Hall viscosity.

Our goal is to measure the optical N-invariant in bulk graphene
through this unique magnetic field repulsion. These topological
properties are revealed in the Kerr rotation of reflected photons.
The Faraday and Kerr effects have been utilized in condensed
matter physics to measure the quantized magnetoelectric
response in 3D topological insulators like Bi2Se352. However, all
such experiments have been performed with low momentum
electromagnetic waves at small incident angles (q ≈ 0), which
cannot probe Hall viscosity or the N-invariant. In fact, evanescent
waves are necessary q≫ 2π/λ since the Hall diffusion length
DH≪ λ/2π is generally much smaller than the wavelength of
light λ.

To overcome this obstacle, we propose evanescent magneto-
optic Kerr effect (e-MOKE) spectroscopy—an angle-resolved and
high-momentum probe of the optical N-invariant. A schematic of
the e-MOKE system is displayed in Fig. 3a. The polar
configuration is graphene on substrate with an applied B-field
and the top exposed to vacuum. For incident light, we exploit a
high index prism available at THz frequencies to interface total
internally reflected evanescent waves with the viscous Hall fluid.
Although the local interaction at the sample location has large
momentum, the subwavelength gyrotropic information is carried
to the far field by reflected photons facilitating the read-out of
e-MOKE data through traditional lock-in techniques. The
experimental smoking gun of B-field repulsion and a nontrivial
N-invariant is the switch in ellipticity of reflected light, depicted
in Fig. 3b. This vanishing Kerr rotation can be measured even at
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room temperature. Theoretical plots of the Kerr rotation are
displayed in Fig. 3c, d.

Topological edge magnetoplasmons and circulators. We now
uncover the topological edge states emerging at the boundary of
the viscous Hall fluid (N= 2) and show they are incredibly
robust, impervious to boundary effects, as well as immune to
back-scattering. We strongly emphasize that the edge states
considered here are fundamentally different than traditional edge
magnetoplasmons (EMPs) predicted by Fetter53, because they are
gapless and only manifest in the magnetohydrodynamic regime.
Topological EMPs with Hall viscosity cannot be regarded as a
correction to gapped Fetter EMPs, since they cannot be con-
tinuously deformed into one another. This is demonstrated
explicitly in Supplementary Note 6.

The extraordinary property of topological EMPs is that they
are completely unaffected by boundary slip. The electron fluid
exerts zero shear stress on the boundary (stress-free) while
simultaneously having zero tangential current (no-slip). This is
very peculiar because slip usually plays a significant role in the
boundary layer physics. Indeed, many factors can alter the
magnitude of slip such as surface roughness, interface-fluid
attraction, nanobubble nucleation and high shear rates54, but the
dispersion of the topological EMP remains independent. Note
that this phenomenon is only possible in the nontrivial phase ∣N∣
= 2 and absolutely no edge state exists in the trivial regime N= 0.
Visualizations of the hydrodynamic boundary conditions are
shown in Fig. 4a with a comparison to traditional magneto-optics
in Fig. 4b. The dispersion relations of the BMP ωb(qy) and
topological EMP ωe(qy) are displayed in Fig. 4c. We have
calculated the dispersion for arbitrary boundary slip conditions to
demonstrate the robustness of the edge state.

Lastly, we numerically simulate an ultra-subwavelength
topological circulator and illustrate the robust unidirectional
transport of topological edge plasmons in complicated geome-
tries. We choose a hexagonal sample of viscous Hall fluid with a
center to edge length of d= 20rc, where rc= ∣vs/ωc∣ is the
cyclotron radius. To excite the topological EMPs we let the dipole
source oscillate in the band gap 0 < ω < ∣ωc∣ such that no bulk
current can be generated. The normalized charge density

fluctuation δρ/ρ0 is plotted in Fig. 4d. For an excitation frequency
of ω= ∣ωc∣/2, the edge wave propagates at approximately the
speed of sound vs. Interestingly, the edge state propagates around
sharp defects with zero back-scattering and is impervious to
boundary effects. Supplementary Movie 1 showcases the
propagation of the edge state around a sharp defect. Supplemen-
tary Fig. 2 displays the geometry of a 3-port topological circulator.

Discussion
We have introduced the optical phases N 2 Z of two-
dimensional quantum matter—a topological classification emer-
ging from the invariant optical proprieties of a material. As a
particularly important platform, we have shown that N ≠ 0 is
nontrivial in graphene’s viscous Hall fluid and fundamentally tied
to repulsive Hall viscosity. In addition, we have proposed a
unique probe of topological matter: evanescent magneto-optic
Kerr effect (e-MOKE) spectroscopy to search for nontrivial spin-1
skyrmion texture and the B-field expulsion that is reminiscent of
the Meissner effect. Robustness and back-scatter immunity of the
topological edge states was demonstrated by analyzing an ultra-
subwavelength circulator. These intriguing optical N-phases are
also expected in topological superconductors, fractional quantum
Hall fluids, Chern insulators, Weyl semimetals and
superfluids39–43, leading to a new generation of effects at the
interface of topological photonics and condensed matter physics.

Methods
Energy regularization from the f-sum rule. The f-sum rule [Eq. (9)] is a form of
energy conservation on light-matter interactions. It implies the sum over all
electronic transitions must equal the total energy put into the system. This places a
fundamental constraint on the electromagnetic LRT. Over the entire frequency
space, the susceptibility tensor can be expressed as χ ¼ χ0 þ iχ00 with χ0 and χ″ both
Hermitian. χ″ accounts for dissipation and absorption mechanisms from electron
transitions. In a quantum system, χ″ is zero in the band gap 0 < ℏω < Ebg but
contains δ-functions at the transition energies. In any case, the absorption over all
ω is invariant due to the f-sum rule48,

Z 1

�1
ωχij

00ðω; qÞdω ¼
Z 1

�1
σ 0ijðω; qÞdω ¼ π

e2n0
m

δij; ð17aÞ

where σ 0 is the dissipative part of the conductivity tensor σ ¼ σ 0 þ iσ 00 . It is clear
that Eq. (17a) can never vanish, otherwise transitions would cost no energy. Using
the Kramers–Kronig relations for large ∣Ω∣→∞, we immediately obtain the

Fig. 3 Experimental e-MOKE setup of topological viscous Hall fluid. a Overview of e-MOKE spectroscopy for direct measurement of the optical

N-invariant through B-field repulsion. b Evolution of the reflected polarization ellipse E!r due to an incident ŝ polarized wave E!0 at the e-MOKE interface.
The frequency of incident light is ω/2π= 286 THz. The ellipticity gradually changes for various incident angles (θ) but abruptly switches handedness due

to skyrmionic vorticity. This cyclotron null coincides with an incident angle tan θH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πn�DH=λÞ2 � 1

q
and only occurs in the nontrivial phase N= 2.

c, d Magnitude Θ and phase Φ of the Kerr rotation plotted against the in-plane momentum q. e The optical N-invariant encodes the angular momentum
texture of spin-1 Néel-type skyrmions and is identified with the skyrmion winding number Δjz=N. This is an experimentally measurable signature of the
N-invariant. In the nontrivial phase N= 2, the spin flips direction which is indicated by the arrows at the high-symmetry points q= 0 and q=∞.
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asymptotic behavior of χ,

lim
jΩj!1

χijðΩ; qÞ ! � 1

πΩ2

Z 1

�1
σ0ijðω; qÞdω ¼ � e2n0

mΩ2 δij: ð17bÞ

Topologically, the f-sum rule can be understood as an energy (Ω) regularization.
Since the susceptibility asymptotically approaches the identity, all singularities
(poles and zeros) of χ occur at finite values of Ω. Hence, any sufficiently large
contour in the complex plane is nondegenerate which is a necessary condition for
homotopy invariance.

Topological stability of the optical N-phases. Here we demonstrate explicitly
that N is a quantized topological invariant and stable under variations. To prove
this, we need only consult the f-sum rule and the regularity of χ at q→∞, outlined
in Eq. (9) and (10) respectively. This definition generalizes beyond the NS equa-
tions to encompass all continuous optical media. We consider an arbitrary per-
turbation to the response function χ→ χ+ δχ, which takes N→N+ δN,

δN ¼ � ϵαβγ

8π2

Z
dΩdq ∂αtr δχ∂βχ

�1χ∂γχ
�1

h i
: ð18Þ

All perturbations amount to a total divergence in the integrand. Since the sus-
ceptibility tensor is regular at q→∞, the spatial q boundary terms necessarily
vanish. This is equivalent to the periodic boundary condition in the lattice theory.
However, temporal Ω boundary terms can contribute if the system is non-
Hermitian (dissipative) since χ is discontinuous along the imaginary line of Ω. This
is observed in Fig. 2c. In the dissipationless quantum limit Γ→ 0, the response
function is Hermitian χ= χ† and therefore continuous along the entire imaginary

line. Due to the f-sum rule, the temporal boundaries are zero and δN= 0 vanishes
identically. N 2 Z is thus topologically quantized and immune to variations in the
optical response.

e-MOKE setup and read out. The MOKE spectroscopy setup we consider is in
polar geometry, with the external magnetic field B applied normal to the graphene
sample. Since graphene is a 2D material, this experiment is more specifically known
as the surface MOKE (SMOKE)55. The Kerr effect, or Kerr rotation, is the phe-
nomenon where linearly polarized light becomes elliptical upon reflection. The
cross polarization term rps that couples ŝ and p̂ polarized waves is directly pro-
portional to the gyrotropy rps∝ g∝Ωc and a definite measurement of the Kerr
rotation. We incident THz frequency light on the sample at steep angles to probe
the high-momentum modes of the electron fluid. To determine if the sample is
topologically nontrivial, we must look for nulls in the Kerr rotation,

tan
Θ

2

� �
expðiΦÞ ¼ rps

rss
: ð19Þ

The exact expressions for the reflection coefficients are derived in the Supple-
mentary Note 4 along with a short review of boundary conditions on 2D charge
densities in Supplementary Note 1. The Kerr rotation is defined by the ratio of
reflected p̂ to ŝ polarization due to an incident ŝ polarized wave. Θ∈ [0, π] is the
relative magnitude and Φ∈ [−π, π] is the relative phase. Theoretical plots of the
MOKE are displayed in Fig. 3c, d. We explicitly calculate the relevant parameters
for monolayer graphene under conventional laboratory settings to isolate the
frequency-momentum space that should be explored for topological phenomena
[see Table 2].

Fig. 4 Boundary layer of the topological viscous Hall fluid. a Depiction of the additional boundary conditions (ABCs) on the current density J in
magnetohydrodynamic systems. The boundary scattering velocity vb dictates the amount of slip at the interface, with vb= 0 and vb=∞ being the extreme
cases of stress-free and no-slip BCs respectively. b Traditional magneto-optics does not consider nonlocal phenomenon and the associated ABCs on J. This
theory cannot describe the physics in the hydrodynamic boundary layer. c Bulk and edge dispersion of the dissipationless Γ= 0 nontrivial N= 2 viscous
Hall fluid. No edge states exist in the trivial regime N= 0. Magenta and black lines are the BMP and topological EMP dispersion respectively, ωb(qy) and
ωe(qy). Gray denotes the continuous bulk spectrum. The simulations include the Coulomb interaction and we have imposed arbitrary boundary slip
conditions. Topological EMPs exist for all values of the scattering velocity vb. d Numerical simulation of the topological circulator on dielectric substrate.
The center to edge length is d= 20rc= 548 nm. A dipole source is placed at the boundary and oscillates periodically in the band gap at ω/2π= ∣ωc∣/4π=
2.26 THz for a total of 1.7 ps. The color plot shows the normalized charge density fluctuation δρ/ρ0 where red and blue indicate positive and negative
values respectively. The topological edge state navigates sharp defects with zero back-scattering and is immune to boundary effects.
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Boundary conditions on viscous Hall fluids. An important feature of an electron
fluid, as opposed to an ordinary fluid, is that it interacts through the Coulomb
potential. Accordingly, we must ensure continuity of the electric potential ϕ and its
normal derivative n̂ � ∇ϕ at the boundary. Although edge states in chiral active
fluids have been studied in the context of the NS equations56,57, scarce few works
have coupled them to Poisson’s equation58. The most significant impact of the
long-range Coulomb interaction is that at low momentum qy→ 0, the group
velocity of the EMP diverges logarithmically ∂ωe=∂qy � �log qy , which is char-
acteristic of a 1D plasmon59.

Due to nonlocality in a hydrodynamic electron fluid60, we also require
boundary conditions on the current density J. In optics these are known as
additional boundary conditions (ABCs)61 since the charge configuration at any
point is not uniquely determined by the electric field at the same point. Nonlocal
theories were first utilized to understand the anomalous skin effect in metals at
high frequencies62. We show that a topological skin effect occurs in the nontrivial
phase ∣N∣= 2, where an AC current propagates unidirectionally at the edge and
decays exponentially into the bulk. The BCs on J follow from elementary
conservation laws. Charge conservation necessitates a vanishing normal current,

n̂ � Jj∂V ¼ 0; ð20aÞ
where n̂ is the outward normal unit vector and ∂V denotes the boundary of the
volume V. A viscous hydrodynamic fluid also requires a BC on the tangential
current, which is related to momentum conservation. The tangential current is
proportional to the shear stress (off-diagonal stress) on ∂V21,

�êt � ς � n̂þmvb t̂ � J
� 	

∂V ¼ 0: ð20bÞ
t̂ ¼ n̂ ´ ẑ is the unit tangential vector, ς is the viscous stress tensor and vb is the
boundary scattering velocity that dictates the slip flow. Note that both shear ν and
Hall νH viscosity generate a shear stress on the boundary so a frictional force
remains even in the quantum limit ν→ 0.

The scattering velocity vb ≥ 0 is generally positive for electron fluids but can be
negative in principle63. In the extreme limits of vb= 0 and vb=∞, we recover the
familiar stress-free and no-slip BCs respectively. Although no-slip is approximately
valid at macroscopic scales, it has no microscopic justification and is normally not
satisfied. We must consider the partial-slip scenario 0 < vb <∞ to accurately
describe the boundary physics. A visualization of the various hydrodynamic BCs is
depicted in Fig. 4a. Another significant issue with stress-free and no-slip is that
they can generate unstable spurious solutions64,65. These unphysical states will be
gapped out immediately if we continuously deform the BC. The topological ones,
however, will remain. This is the case for topological EMPs which is shown in
Supplementary Fig. 1. In the nontrivial phase ∣N∣= 2, the EMP satisfies no-slip and
stress-free BCs simultaneously and is therefore independent of the boundary slip
flow. Indeed, Eq. (20b) is fulfilled automatically for any value of vb, including
negative values. This interesting property is demonstrated in Fig. 4c, d, which is
simulated for arbitrary values of vb.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its supplementary information files.

Code availability
The code compiled for numerical simulations are available from the corresponding
author upon reasonable request.
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