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Abstract: Optical forces acting on particles - controlled by the intensity, polarization and
direction of optical beams - have become an important tool in manipulation, sorting and analysis
of nano/micro-particles. The nature of these forces has been well understood in reciprocal
structures exhibiting time-reversal symmetries. Here, we investigate the nature of optical forces
in non-reciprocal structures with non-degenerate counter-propagating modes. We consider
the specific case of non-reciprocity induced via translational motion and show that the two
counter-propagating modes in a moving slab-waveguide are not degenerate which results in
a non-zero lateral and longitudinal force on a nanoparticle. We prove that these anomalous
forces are fundamentally connected to near-field photonic spin in optical waveguides and explain
their directionality using universal spin-momentum locking of evanescent waves. The presented
results show that the interplay of photon spin and non-reciprocity can lead to unique avenues of
controlling nanoscale optical forces on-chip.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The use of controlled optical forces has evolved into an important tool for analysis, manipulation
and sorting of nanoparticles [1–5]. These optical forces depend on the intensity, direction and
polarization of the optical beam, which can be manipulated to precisely control the nanoparticles.
Among the optical forces, an anomalous lateral force acting on chiral particles is of particular
interest, as it strongly depends on the chirality of the particle and acts in a direction transverse to
the radiation pressure and the gradient force [6–14]. The lateral force can therefore be efficiently
employed to optically separate molecules and particles based on their chirality, which is otherwise
a challenging task in chemistry and biology [3]. The magnitude and direction of this anomalous
lateral force depends on the transverse spin-density of the optical beam and is reported to be
locked to the momentum of the optical beam [15]. The origin of this momentum-locked lateral
optical force is in the, recently reported, universal spin-momentum locking in electromagnetic
waves [16, 17]. Locking of the optical spin with the direction of propagation (momentum) is
similar to the phenomena known for electronic surface states [18, 19], and also explains the
polarization-dependent directional propagation of optical modes and surface plasmon polaritons
reported in recent experiments [20–23]. This phenomenon also occurs for spontaneous emission
and scattering from 2D materials due to circularly polarized light emission [24].
The origin of spin-momentum locking was found by Mechelen. et. al [16] to be inherent to
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the nature of evanescent optical waves, which forms a right-handed triplet of spin, momentum
and direction of attenuation in any evanescent wave.

ŝ = k̂ × η̂, (1)

here k̂ is the direction of propagation (momentum), η̂ is the direction of decay of the evanescent
field and ŝ is the direction of transverse spin. This spin-momentum locking is universal and
can be observed in various waveguiding structures such as slab-waveguides, surface plasmons,
and optical fibers [15, 25–30]. The specific case of optical forces at total internal reflection was
studied [15] and also experimentally demonstrated recently [8]. At optical frequencies this effect
is tied to causal boundary conditions on evanescent waves which transfer this spin-momentum
locking to bulk guided modes. At microwave frequencies, where perfect metallic boundary
conditions are allowed, the longitudinal component of the electric field gives rise to similar spin-
momentum locking effects in waveguides. Note, we do not address this effect by "chiral" optics
so as to avoid confusion with chiral nanoparticles where magnetic response is fundamentally
necessary. The difference between chiral dipole emission and spin-polarized dipole emission
is that a chiral dipole emits directionally even when placed at the center of the waveguide. A
detailed analysis of this effect can be found in [16]. We emphasize that spin-momentum locking
in waveguides, plasmons, optical fibers is a classical phenomenon and not related to any quantum
or topological phenomenon.

Figure 1 displays the architecture for on-chip spin photonics. It shows the schematic of a ridge
waveguide and the observed universal spin-momentum locking with the locked triplet of spin,
momentum and decay. The waveguide has a fundamental TE-like mode. This mode has dominant
electric spin-density in the ẑ direction and dominant magnetic spin-density in the ŷ direction.
The direction of the spin-density is governed by the spin-momentum locking right-hand rule
[Eq. (1)]. In a reciprocal optical structure, the positive- and negative-momentum modes are
degenerate and therefore the spin-density (and hence the optical force) switches its sign, while
conserving the magnitude, with reversal of the momentum. However, the non-reciprocity in wave
propagation can break the degeneracy of positive- and negative-momentum modes and open up a
new dimension in the control of optical forces on nanoparticles. We emphasize that the direction
of the spin photonic force on a chiral particle is governed by the right handed triplet rule.
In this paper, we explore the interplay of spin photonics and non-reciprocity in waveguides.

We consider the special case of non-reciprocity induced by motion of a slab waveguide, a
situation which physically occurs when there is a relative motion between a particle and an
optical structure. We show that the degeneracy of positive- and negative-momentum modes
in a non-reciprocal (moving) waveguide is broken, and results in an unbalanced transverse
and longitudinal optical force. Here we present the transformation of waveguide modes as
observed by a particle moving near a slab waveguide, and show the non-degeneracy of the
positive- and negative-momentum waves. We further show that the transverse polarization
(spin) switches from RHC to LHC while remaining locked to the momentum, as the velocity
of propagation approaches the Cherenkov velocity. Finally, we compute the optical recoil force
and radiation pressure force on a chiral particle interacting with the evanescent fields of two
counter-propagating modes in a moving slab-waveguide. Our simulations show the existence of
unbalanced forces that are proportional to the magnitude of the velocity and form an important
step in understanding the nature of spin-photonic forces on moving-particles. Although we have
analyzed the case of non-reciprocity induced by moving media, a similar phenomenon can be
expected in non-reciprocal optical devices realized by magnetoplasmonic structures [31, 32], or
by recently reported opto-mechanically induced non-reciprocity [33, 34]. Such motion induced
non-reciprocity is widely used in Fiber Optic Gyroscopes (FOG) [35] and is still an active
area of research [36–38]. Recently, Weernink et al. have studied forces induced by breaking
time-reversal symmetry in a rotating particle near a planar surface [39] and similar systems can
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Fig. 1. Spin-momentum locking in a ridge waveguide. (a) Schematic of a ridge waveguide
and the EM triplet introduced by Mechelen et. al. [16], for the fundamental TE-like mode.
(b) ẑ component of electric spin-density 〈 ®Se〉 in y-z plane for the fundamental mode. (c) ŷ
component of magnetic spin-density 〈 ®Sm〉 in y-z plane for the fundamental mode.

be used to verify our theoretical predictions.

2. Non-reciprocity in moving waveguides and photon spin

For the analysis of non-reciprocity in moving waveguide structure, we consider a simple slab-
waveguide, as it is easier to solve the dispersion curves and compute the modal field profiles
for a moving slab-waveguide. We would like to emphasize that the presented phenomena is
equally valid in a practical structure, such as ridge waveguide. Let us consider a particle moving
with velocity vmotion parallel to the interface of a slab-waveguide, such that it interacts with the
evanescent fields of the propagating modes, as shown in Fig. 2(a). If the particle is moving in the
negative x̂ direction, its interaction with the slab-waveguide can be equivalently analyzed as the
interaction between a stationary particle and a slab-waveguide moving in +x̂ direction. In the
proper frame of the particle, the slab waveguide will move with a velocity vmotion in the positive
x̂ direction. As per the Lorentzian transformation of the constitutive properties, the isotropic
dielectric of the slab will appear as bianisotropic in the moving frame of the particle [40]. For
simplicity, we consider a two dimensional waveguide in the x − z plane with modal propagation
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Fig. 2. (a) Schematic of a chiral particle moving near a slab-waveguide. It can be equivalently
analyzed by transforming to the frame of the particle where the waveguide is moving instead.
(b) The dispersion curves of positive (blue) and negative (red) momentum modes in the full
ω − k plane when the slab is stationary (solid line) and moving (dashed line). The thickness
of the waveguide is d = 1.5µm and the dielectric constant is εr = 9. The frequency axis
is normalized to k0 = ω0/c, where ω0 = 2π1014rad/s. (c) Shows the field plots in the
slab-waveguide at points n1, p1, n2 and p2. The color plot represents the ŷ component
of the third Stokes parameter ®S3 = S3 ŷ and the electric field is shown by arrows. (d) The
electric-spin density 〈 ®Se〉 = ε0 ®S3/(2ω) of the positive- and negative-momentum modes as a
function of slab velocity at dz = 0.1d, where d is the thickness of the slab.

along x̂ direction. Our calculations are fully relativistic and the details can be found in the
appendix [41].

Figure 2(b) shows the TM-mode dispersion curves of the stationary and moving slab waveguide
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in the full ω − k plane. The frequency is normalized with velocity of light such that k0 = ω/c.
The solid curves represent the stationary case, while the dashed curves represent the dispersion
curves when the slab is moving with normalized velocity βx = vmotion/c = 0.2. The stationary
slab-waveguide is a reciprocal structure with symmetric as well as degenerate positive-momentum
(kx > 0) and negative-momentum (kx < 0) modes. However, the moving slab-waveguide is a
non-reciprocal structure because of the bianisotropy and asymmetric Doppler transformation
of the positive-momentum and negative-momentum modes. A positive mode p1 undergoes
a blue-shift (increase in the frequency) to a point p2, while a negative-momentum mode n1
undergoes red-shift (decrease in the frequency) to a point n2. The transformation of the points n1
and p1 as a function of normalized velocity of motion (βx) is shown by the colored line, where
the color mapping of βx is quantified by the inset colorbar in Fig. 2(b). The negative-frequency
region of the plane represents the complex conjugate component of the propagating wave solution.
It can be seen that for a moving slab-waveguide, the propagation characteristics are asymmetrical
and non-reciprocal.
Figure 2(c) displays the field plots at the four specific points (n1, p1, n2, p2) in the ω − k

plane. To quantify the non-degeneracy of positive and negative propagating modes, we compute
the electric spin-density 〈 ®Se〉 in the evanescent wave region. Here we analyze both the third
Stokes parameter ®S3 = =( ®E∗ × ®E), which quantifies the local direction and magnitude of circular
polarization, and the associated spin-density 〈 ®Se〉 = ε0 ®S3/(2ω) of electromagnetic waves. The
spin-density represents a dynamical quantity and provides a measure of the local spin angular
momentum (SAM) contained in the field. This is closely related but not equivalent to the
third Stokes parameter. The electric field profile is represented by the vector plot (arrows),
while the circular electric polarization ®S3 normalized between (−1, 1) is shown by the color
plot. In the stationary case, the electric field profile is symmetrical for both positive- (p1)
and negative-momentum (n1) modes, with the sign of ®S3 flipped with the momentum (kx)
throughout. However, for a moving-slab waveguide, the field strength and spin-density differs for
the corresponding p2 and n2 modes -because of the bianisotropy- resulting in non-degeneracy
of positive- and negative-momentum modes. Note, the magnetic spin-density vanishes for TM
modes. Figure 2(d) shows 〈 ®Se〉 as a function of slab velocity (βx) at a distance dz = 0.1d from
the interface of the waveguide. When the slab is stationary, βx = 0, the spin-densities of the
positive-momentum and negative-momentum modes are equal and opposite. Conversely, when
the slab starts moving, the breaking of degeneracy in the positive and negative-momentum leads
to asymmetry in 〈 ®Se〉 for the non-reciprocal slab-waveguide.

For completeness, we also analyze the relativistic case when the velocity of motion is greater
then the Cherenkov threshold velocity. Figure 3(a) shows the transformation of positive- and
negative-momentum modes for this relativistic regime. It is physically possible for a fast moving
relativistic particle to observe the waveguide as moving with velocity greater than the Cherenkov
velocity (vmotion > ω/kx) since the phase velocity in a stationary waveguide is less then the
velocity of light. When the velocity is large enough (vmotion > ω/kx), the complex-conjugate
component of the negative-momentum mode is transformed to the positive-momentum positive-
frequency region, resulting in flipping of negative-momentum to positive-momentum. A similar
transformation for plasmonic mode in moving metal-insulator-metal waveguide structure is
explained in detail in [41]. This essentially means that the slab-waveguide is moving fast enough
for the backward propagating mode to appear as forward propagating in the reference frame
of the particle; consequently switching the sign of momentum from negative to positive at the
Cherenkov velocity. Since the polarization state of the evanescent wave is locked to the direction
of momentum, the near-field polarization also switches from RHC to LHC, as shown in the
Fig. 3(b). As the mode transformation approaches Cherenkov velocity, its frequency approaches
the zero limit k0 → 0. This is a quasi-static limit, where the phase-front appears stationary and
the magnetic field vanishes. At this point, the spin-density diverges 〈 ®Se〉 → ∞. However, this
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Polarization switching

at Cherenkov velocity

Fig. 3. Velocity of motion greater than Cherenkov velocity. (a) Dispersion curves in
the moving slab waveguide when the velocity of motion is large enough to transform the
negative frequency modes to the positive frequency region. Above the Cherenkov velocity
the negative-momentum mode is also transformed to the positive-momentum. (b) Shows the
spin of the modes as latitude on the Poincare sphere. It can be seen that the spin switches
abruptly from LHC to RHC at the Cherenkov velocity.

does not imply a singularity in polarization ®S3.
The above discussion shows that the spin-density of two counter-propagatingmodes in a moving

waveguide is not balanced. This imbalance can be viewed as motion-induced net spin-density.
Note that this spin is zero in a stationary waveguide with degenerate counter-propagating modes.
This unbalanced spin results in unbalanced optical forces on a particle interacting with the spin
of a moving waveguide.
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Fig. 4. (a) Two degenerate and counter-propagating modes in a stationary waveguide are
symmetric, resulting in a balance of radiation pressure force and scatttering recoil force
on a particle in its vicinity. However, when the slab is moving, the two modes transform
asymmetrically resulting in an unbalanced force. (b) ∆Fy represents the net optical force
on a chiral particle due to the two modes in the lateral direction ŷ as function of velocity
of motion. Fy f and Fyb is the force on the particle in ŷ direction due to the positive
(forward) momentum mode and the negative (backward) momentum mode, respectively.(c)
∆Fx represents the net force in the x̂ direction as function of velocity of motion. Fx f and
Fxb represent the force in the x̂ direction due to the positive-momentum mode and the
negative-momentum mode, respectively. All forces are computed at a distance 0.1d from
the interface, where d = 1.5µm is the thickness of the slab waveguide. For computation
of optical force, electric field of the form Ex = 1ei(kx x−ωt)eikz2zV/m, is assumed in the
region z > d/2. This corresponds to the approximate Poynting vector of 17 µW/m2 at the
center of the stationary waveguide.
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3. Longitudinal and transverse photonic forces

First we analyze the stationary waveguide [Fig. 4(a)]. Here, both positive- and negative-
momentum modes are simultaneously propagating with identical but reversed properties. Their
transverse spin (along ŷ) at a point near the waveguide interface is equal and opposite for βx = 0,
as shown in Fig. 2(d). Therefore, the net transverse optical scattering-recoil force resulting from
the interaction of electric spin-density and a chiral particle also balances to zero. However, when
the particle is moving, it interacts with a moving slab-waveguide in which the positive- and
negative-momentum modes are not degenerate, possessing unequal frequency and spin-densities.
This results in an unbalanced force whose direction and magnitude depends on the relative velocity
between the particle and the slab. The scattering recoil force of a TM-polarized wave is shown in
Fig. 4(b) and is primarily along the transverse ŷ direction. The blue and red curves represent the
force due to the positive- and negative-momentum modes respectively and the net resultant force
is represented by the black dashed curve. It can be seen that the resultant force is proportional to
the velocity of motion βx and its sign is reversed with the direction of motion. Here we have
assumed a constant polarizability matrix of

[
αee iαem
−iαme αmm

]
=

[
1.2+i0.01Cm2/V i0.01Cm2/A
−i0.01Am3/V 0.0002m3

]
× 10−24

for the chiral particle [15].
Figure 4(c) shows the radiation pressure force acting along the x̂ direction. As expected, the

radiation pressure force due to individual modes is along the direction of propagation respectively,
which results in zero net force for a stationary waveguide (see black dashed curve at βx = 0).
However, when there is a relative motion between the particle and the sforb-waveguide, the
radiation pressure force due to the two counter-propagating modes are unequal, resulting in a
net force proportional to the relative velocity. Note that the radiation pressure force exists even
for an achiral particle, and the direction of the force is such that it opposes the relative motion
between the particle and the waveguide. This is similar to the vacuum drag experienced by a
particle moving in the vicinity of a medium and interacting with the thermal fluctuation induced
near-fields.
We emphasize that the optical force due to non-reciprocity is a novel observation, which is

very different in characteristics from an optical force created by unequal relative strength of two
counter-propagating modes.

4. Conclusion

We have shown that non-reciprocity - induced by relative motion- results in (i) longitudinal optical
forces in a polarizable particle (ii) lateral force in a chiral particle. The fundamental origin of the
lateral force is the spin-momentum locking in the near field. Both these forces are proportional
to the velocity, which may lead to velocity sorting of particles. The presented phenomena will
be applicable to other structures with dynamically induced non-reciprocities [31, 33] as well as
quantum gyro-electric phases of matter [42], and will lead to novel mechanisms to control the
trajectories and localization of particles. Exploiting non-reciprocity and transverse photon spin
gives an additional degree of freedom in optical force manipulation. A possible experiment to
employ the proposed phenomena for segregation of nano-particles based on chirality and velocity
will involve integration of optical waveguide with a microfluidic channels. It is also possible to
use the phenomenon of total internal reflection to verify the proposed spin photonic force.

Appendix A. TM-modes in a moving-slab waveguide

A.1. Electric and magnetic fields in moving medium

The electric and magnetic fields in a moving-medium are coupled as per Lorentz transformations,
resulting in a bianisotropic medium [40]. The electric displacement field ®D and magnetic field
intensity ®H are related to the electric field ®E and magnetic flux density ®B as per the following
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equation, 
c ®D
®H

 =

cε0←→ε ←→χ
←→η

←→µ −1

cµ0



®E

c ®B

 (2)

Here c is the speed of light in vacuum. When the medium is moving along x̂ direction with a
velocity vmotion, such that βx = vmotion/c, then the matrices←−ε ,←−χ ,←−η and←−µ−1 can be written
as,

←→ε = γ2


εr
γ2 0 0

0 εr − β2
x 0

0 0 εr − β2
x


(3)

←→χ = γ2
√
ε0
µ0


0 0 0

0 0 −βx(εr − 1)

0 βx(εr − 1) 0


(4)

←→η = γ2
√
ε0
µ0


0 0 0

0 0 −βx(εr − 1)

0 βx(εr − 1) 0


(5)

←→µ −1 = γ2


1
γ2 0 0

0 −β2
xεr + 1 0

0 0 −β2
xεr + 1


(6)

where εr is the relative dielectric constant of the medium in stationary state, and γ = 1√
1−β2

. For

harmonic fields propagating with wave vector ®k = kx x̂ + ky ŷ + kz ẑ, the Maxwell’s curl equations
can be written as,

←→
k · ®E = ω ®B (7)
←→
k · ®H = −ω ®D (8)

where

←→
k =


0 −kz ky

kz 0 −kx

−ky kx 0


(9)

For an inplane wave propagation in x − z plane, the ky = 0. From Eqs. (2) and (7-8), we get,

®H =
[
←→η +

←→µ −1

µ0ω
· ←→k

]
· ®E (10)

®E = −
[
ωε0
←→ε +←→χ · ←→k

]−1
· ←→k · ®H (11)

From the above equations, it can also be derived that
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(←→
k · ←→µ −1 · ←→k

ωµ0
+ ωε0

←→ε +←→k · ←→η +←→χ · ←→k
)
· ®E = 0 (12)

The condition for non-trivial solution of ®E in the above equation gives the general dispersion
relation in a moving medium.

det

(←→
k · ←→µ −1 · ←→k

ωµ0
+ ωε0

←→ε +←→k · ←→η +←→χ · ←→k
)
= 0 (13)

A.2. Modes in moving-slab waveguide

We assume a 2D slab waveguide in the x− z plane, with modal propagation along x̂ direction. The
relative dielectric constant of the slab is assumed to be εr = 9 with thickness d = 1.5µm, such
that it extends from z = −d/2 to z = +d/2 in the ẑ direction. The frequency of the fundamental
mode for such a waveguide comes in the range of 100 THz. The expressions for magnetic and
electric fields for TM mode in the three regions (i) −d/2 < z < d/2 (ii) z > d/2 (iii) z < −d/2,
are

(i) −d/2 < z < d/2

Hy = Cei(kx x−ωt)e−ikz1z + Dei(kx x−ωt)eikz1z (14)

Electric field in moving-slab waveguide is derived from Eq. (11), by substituting ky = 0 for
inplane propagation. The relation between kx , kz and ω in given by the dispersion relation of
eq(13).

(ii) z > d/2

Hy = Aei(kx x−ωt)eikz2z (15)

(iii) z < −d/2

Hy = Bei(kx x−ωt)e−ikz3z (16)

In region (ii) and (iii), regular relation between electric and magnetic fields is used to compute
the electric fields. Since the direction of motion is perpendicular to the direction of interface
between slab and the surrounding vacuum, the boundary conditions on the tangential components
of the fields hold true for moving medium as well [40,41]. Boundary conditions are applied at the
two interface on Ex and Hy components to solve for the dispersion relation and the modal fields
in moving-slab waveguide. Note that for a fair comparison between the stationary and moving
waveguide properties, it should be ensured that only Ex field is conserved in the calculations
of the moving waveguide, because the fields perpendicular to the direction of propagation are
not conserved as per Lorentz transformation. Other field components must be computed as per
Eqs. (10) and (11). For computation of optical force, Ex = 1ei(kx x−ωt)eikz2zV/m, is assumed in
the region z > d/2.

Appendix B. Optical forces on a chiral particle

A chiral particle is characterized by its polarizability matrix
[
αee iαem
−iαme αmm

]
, which is defined

as
[
®p
®m

]
=

[
αee iαem
−iαme αmm

] [
®E
®H

]
. Here ®p is the electric dipole moment and ®m is the magnetic
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dipole. The coefficients of polarizability matrix of the chiral particle is assumed to be [6, 15]
αee = (1.2 + i0.01) × 10−24Cm2/V , αmm = 0.0002 × 10−24m3, αem = 0.01 × 10−24Cm2/A and
αme = 0.01 × 10−24 Am3/V .
The optical forces acting on this chiral particle are given by [6, 15],

〈 ®F〉 = 〈 ®Fgr 〉 + 〈 ®Fop〉 + 〈 ®Fsr 〉, (17)

〈 ®Fgr 〉 = ∇U, (18)

〈 ®Fop〉 =
k0
c

(
Im[αee]
ε0

+
Im[αmm]

µ0

)
〈 ®N〉 − Im[αem]∇ × 〈 ®N〉

−ck0
2

(
Im[αee]
ε0

∇ × 〈®se〉 +
Im[αmm]

µ0
∇ × 〈®sm〉

)
+ω2Im[αem]

(
〈®se〉 + 〈®sm〉

)
,

(19)

〈 ®Fsr 〉 = −
ck4

0
6π

{ (
Re[αeeα∗mm] + |αem |2

)
〈 ®N〉 +

√
µ0
ε0

Re[αeeα∗em] ®Se
3

+

√
ε0
µ0

Re[αmmα
∗
em] ®Sm

3 −
1
2

Im[αeeα∗mm]Im[ ®E × ®H∗]
}
,

(20)

where k0 = ω/c, 〈 ®N〉 = 1/2Re{ ®E × ®H∗}, and U = 1/4
(
Re[αee]| ®E |2 + Re[αmm]| ®H |2 −

2Re[αem]Im[ ®H · ®E∗]
)
. 〈 ®Fgr 〉 is gradient force, 〈 ®Fop〉 is optical pressure force, and 〈 ®Fsr 〉 is

scattering recoil force. The expressions for the forces are derived fromMaxwell stress tensor [43],
↔
T ,

Ti j = ε0

(
EiEj −

1
2
δi jE2

)
+

1
µ0

(
BiBj −

1
2
δi jB2

)
, (21)

®F =
∮
∂ν

↔
T · ®a. (22)

where ∂ν is a closed surface enclosing the particle and ®a is normal to that surface.
These optical forces are computed from the fields at a distance of 0.1d, which corresponds to

0.15µm. The frequency ω of the modes in stationary waveguide is assumed to be 2π1014rad/s.
For the moving waveguide, the frequency is transformed as per the transformation of dispersion
curve [Fig. 2(b)].
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