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We show the existence of an inherent property of evanescent electromagnetic waves: spin-momentum locking, where
the direction of momentum fundamentally locks the polarization of the wave. We trace the ultimate origin of this
phenomenon to complex dispersion and causality requirements on evanescent waves. We demonstrate that every case
of evanescent waves in total internal reflection (TIR), surface states, and optical fibers/waveguides possesses this
intrinsic spin-momentum locking. We also introduce a universal right-handed triplet consisting of momentum, decay,
and spin for evanescent waves. We derive the Stokes parameters for evanescent waves, which reveal an intriguing
result—every fast decaying evanescent wave is inherently circularly polarized with its handedness tied to the direction
of propagation. We also show the existence of a fundamental angle associated with TIR such that propagating waves
locally inherit perfect circular polarized characteristics from the evanescent wave. This circular TIR condition occurs if
and only if the ratio of permittivities of the two dielectric media exceeds the golden ratio. Our work leads to a unified
understanding of this spin-momentum locking in various nanophotonic experiments and sheds light on the
electromagnetic analogy with the quantum spin-Hall state for electrons. © 2016 Optical Society of America
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1. INTRODUCTION

An important signature of the recently discovered quantum spin-
Hall (QSH) state of matter is the existence of electronic surface
states that are robust to disorder (nonmagnetic impurities) [1,2].
This property arises since the spin of the electron is intrinsically
locked to the direction of propagation (momentum) and the
electrons cannot backscatter unless there is a spin-flip [3].
Intriguingly, recent experiments have explored an analogous phe-
nomenon in photonics showing polarization-dependent direc-
tional propagation of optical modes in spontaneously emitted
as well as scattered light [4–12]. For example, experiments have
shown that spontaneous emission from atomic transitions is pref-
erentially unidirected along a fiber depending on the magnetic
quantum number of the excited state [8]. On the other hand,
surface plasmon polaritons (SPPs) excited with circularly polar-
ized light have also demonstrated unidirectional propagation
[5,6]. One common thread in these experiments is the evanescent
wave, which leads to a clear hint that the effect is tied to funda-
mental properties of decaying waves and not the details of the
nanophotonic structures. A quantum field theoretic treatment
has also recently shed light on the interesting spin properties
of evanescent waves [13,14]. However, there is an urgent need
for a unified theory about the inherent origin of this effect
and its underlying connection to experiments. In analogy with

the behavior of electrons in the quantum spin-Hall effect, we call
this phenomenon “spin-momentum locking.”

In this paper, our central contribution is the proof that spin-
momentum locking is universal behavior for electromagnetic
waves, which stems from the complex dispersion relation of evan-
escent waves and fundamental causality requirements. We intro-
duce a universal triplet consisting of momentum, decay, and spin
of evanescent waves. We show that the Stokes parameters for an
evanescent wave unambiguously reveals that every fast decaying
evanescent wave is inherently circularly polarized irrespective of
how it originates. Furthermore, this inherent handedness (spin)
is locked to the direction of propagation (momentum). This in-
formation hidden in the Stokes parameters has been overlooked to
date and is in stark contrast to the existing knowledge on propa-
gating waves. The universality of this phenomenon is revealed by
analyzing, in detail, the cases corresponding to (a) total internal
reflection (TIR), (b) waveguides, (c) optical fibers, and (d) surface
electromagnetic waves. We also show the existence of a unique
criterion in TIR (“golden ratio condition”) at which propagating
light is locally circularly polarized on TIR. This effect can be used
to verify our theory in near-field optical experiments. Last, we
provide detailed insight on how spontaneous emission from a
quantum emitter can couple to spin-momentum locked
states in optical fibers. Our work explains various experimental
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observations and should open up future ways of exploiting this
universal spin-momentum locking for practical applications.

2. EVANESCENT WAVES

A. Complex Dispersion Relation

We first construct a general basis vector for evanescent waves in-
dependent of origin, which reveals a universal electromagnetic
right-handed triplet consisting of momentum, decay, and spin.
The wavevector of an evanescent plane wave necessarily has to
be complex and can be written in a general form as k � κ� iη.
Here, η is the imaginary part of k and is related to the decay, while
κ is the real part related to phase propagation (momentum).
Starting from the dispersion relation obtained using Maxwell’s
equations in free space, we have

k · k � k20; (1)

which implies, since k0 � ω∕c is purely real, that the two
components of k must satisfy

κ2 − η2 � k20; (2a)

κ · η � 0: (2b)

We note here that for complex wavevector k, the absolute
value is given by jkj2 � k · k�, which is different from the factor
k · k that enters the dispersion relation of plane waves in vacuum.
These two terms are not equivalent for evanescent waves. From
Eq. (2b), we make an important observation: the complex
dispersion relation in free space necessarily requires that κ and
η be orthogonal. This implies that the phase propagation of an
evanescent wave (momentum) is perpendicular to its direction
of decay. Furthermore, these orthogonal phase propagation and
decay vectors always have a phase difference between them (factor
of i � ffiffiffiffiffi

−1
p

), which is imprinted on orthogonal components of
the electromagnetic field vectors through the transversality con-
dition (k · E � 0). We will show now that this is the intuitive
reason for the inherent handedness (spin) of the evanescent wave.

Like propagating plane waves, evanescent waves can have two
orthogonal field polarizations, which we denote by bs and bp unit
vectors. bs is defined to have an electric field perpendicular to the
plane formed by the propagation vector (κ) and decay vector (η),
while the electric field vector lies in the plane for bp. Without any
loss of generality, an elegant choice of basis can be made to re-
present these unit vectors uniquely in terms of the evanescent
wave wavevector. Our choice of basis is the triplet {κ, η,
κ × η}. We emphasize that this choice of basis alone fulfills the
transversality condition imposed on electromagnetic waves in
vacuum (k · E � 0) and therefore is coordinate independent.

By defining bs and bp as

bs � κ × η
jκ × ηj � i

k × k�

jk × k�j ; (3a)

bp � k ×bs
jkj � i

k × �k × k��
jkjjk × k�j ; (3b)

k ·bs � k · bp � bs · bp � 0; (3c)

we express the evanescent field polarization entirely in terms of its
momentum (k). This form is robust enough that it can also be
generalized to lossy media when κ and η are nonorthogonal. We
emphasize that this unique form of evanescent wave basis vectors

is universal and reduces to the case of plane wave basis vectors
when η → 0. A proof is given in Supplement 1.

The above representation reveals important aspects about the
intrinsic “spin” of an evanescent wave. We define this intrinsic
“spin” to be the inherent handedness (left/right circular/elliptical
polarization) of the field basis vector. We rigorously justify this in
the next section but make a note that electric fields in any specific
scenario can be represented using these basis vectors. Hence,
properties of field basis vectors will always be manifested in
the electric and magnetic fields.

Note first that bs is purely real, so the orthogonal components
comprising the field vector will be in phase. Thus, evanescent
waves with an electric field vector field perpendicular to the plane
formed by the decay vector and propagation vector will show no
interesting polarization characteristics. However, the bp field basis
vector is now complex. Using the properties from Eq. (2) and a bit
of manipulation we obtain

bp � i
�
η

jkj

�
κ
κ

�
� i

κ

jkj

�
η
η

��
; (4)

where we can clearly see that the bp polarization is just a linear
combination of κ and η unit vectors with an in-built phase differ-
ence between the orthogonal components. This immediately im-
plies that there will be an inherent elliptical polarization imparted
to the field.

B. Stokes Parameters

We now extend the concept of Stokes parameters [15] beyond
propagating waves to fully characterize this interesting bp-
polarization state of an evanescent wave. Complex bp is expressed
as a linear combination of two basis vectors, which motivates us to
consider spin-12 operators. The Stokes parameters of an evanescent
wave can be written as the expectation values of the Pauli matrices
and carries nontrivial information:

S0 � hbpj1jbpi � 1; (5a)

S1 � hbpjσz jbpi � k20
jkj2 ; (5b)

S2 � hbpjσx jbpi � 0; (5c)

S�3 � hbpjσyjbpi � �2
κη

jkj2 : (5d)

S1 and S3 quantify the amount of spin, i.e., the degree of
linear- and circular-polarized character of an electromagnetic
wave. Here, � denotes the two directions of the phase propaga-
tion possible for the evanescent wave. We see that the polarization
state of the field basis vector bp is dependent only on the complex
components of the wavevector, while the actual electric and mag-
netic field elements are irrelevant in this instance. This means that
there will be a certain degree of elliptical polarization intrinsic to
the electromagnetic field, which is determined entirely by the real
and imaginary components of the momentum (k). In this sense,
there will be inherent “spin” associated with the evanescent wave
since the unique basis vector bp itself imparts handedness to
the wave.

Note that the bs vector can now be interpreted as the “spin
direction” since it signifies the handedness of the electric field withbp polarization. This spin vector (bs) is orthogonal to both κ and η,
which constitute the basis of bp. Furthermore, the transformation
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κ → −κ, for fixed decay direction (η), changes the handedness ofbp [sign�S3�]. This also flips the direction of bs, which is consistent
with an opposite direction of spin. This shows that the spin is
fundamentally locked to the direction of propagation (momen-
tum). The diagram in Fig. 1 shows the construction of a funda-
mentally locked triplet for evanescent waves formed by the phase
propagation vector (κ), decay vector (η), and spin (bs).
C. Inherent Polarization

In this section, we prove that every fast decaying evanescent wave
is inherently circularly polarized and its handedness is tied to the
direction of phase propagation (momentum). We consider the
case of an evanescent wave with very high momentum such that
κ ≫ k0. The dispersion relation then implies κ ≈ η, and the wave
decays on a length scale much smaller than the wavelength. In
simplifying the expression for the bp-polarized basis vector,

bp →
i ffiffiffi
2

p
��

κ
κ

�
� i

�
η
η

��
; (6a)

S1 → 0; (6b)

S�3 → �1; (6c)

which we can clearly see is a state of circular polarization.
The above result implies that every fast decaying evanescent

wave lies on the north or south pole of the Poincaré sphere while
propagating waves can lie anywhere on the Poincaré sphere.
Furthermore, the choice of the south and north pole
(S3 � �1) is dictated by the direction of the phase velocity
(�κ). Thus spin-momentum locking is a fundamental property
of evanescent waves. To visually illustrate these polarization states,
we compare the Poincaré spheres of propagating and evanescent
waves in Fig. 2.

3. SPIN-MOMENTUM LOCKING FROM
CAUSALITY

The “spin-locking” characteristic of evanescent waves comes from
the fact that κ and η are inherently orthogonal as dictated by the

complex dispersion [Eq. (2)]. Simultaneously, the unit field vectorbp, which is related to the wavevector, possesses a π∕2 phase differ-
ence between its orthogonal components. This phase is not an
artifact of some particular combination of polarization vectors
but is embedded into the vector field itself to guarantee that the trans-
verse condition (k · E � 0) is satisfied.

Ultimately, evanescent waves require some sort of boundary
condition to exist in a region of space, which usually involves
a symmetry breaking or a change in material parameters. For
an arbitrary plane wave (∝ exp�ik · r� � exp�iκ · r� exp�−η · r�),
this boundary condition, in general, opens up two possible propa-
gation directions �κ, and two decay/growth directions �η,
which allows up to four degenerate solutions. However, we know
immediately that only one of the η solutions can exist because the
wave must be finite in the region of space that includes infinity,
i.e., it must decay away from the boundary toward infinity.
Exponential growth in a passive medium is nonphysical because
it would require a noncausal solution to the boundary condition.
For planar interfaces, the branch cut for the complex wavevector
(k) is chosen based on the direction of the decay of the evanescent
wave, which occurs along the normal to the interface. Note the
branch cut corresponding to growing evanescent waves is
discarded for passive media.

This causality requirement leads to the fact that the handed-
ness or “spin” of the evanescent waves is now determined and
locked to the propagation direction (the momentum). This is be-
cause, while the decay vector (η) cannot change, the wave is free to
propagate in both directions (�κ), flipping the handedness of bp.
In other words, the set of allowed evanescent waves consists of
only two possibilities due to this condition—one with positive
momentum �κ and positive spin direction �bs, and the other
with negative momentum −κ and negative spin direction −bs.
Hence, causality and transversality (or complex dispersion) can
be considered to be the fundamental origin of the universal
spin-momentum locking of evanescent waves [see Fig. 1].

4. UNIVERSAL BEHAVIOR

In this section, we show that evanescent waves possess this spin-
momentum locking in various scenarios. It becomes imperative to
revisit fundamental concepts of TIR and waveguide modes to

Fig. 1. Our result shows a fundamental right-handed triplet formed
by momentum, decay, and spin for evanescent waves. Note the locked
triplets for waves propagating in two opposite directions. As we can see,
the direction of the spin bs flips for the two cases. It is important to note
that, in general, there are four degenerate solutions, but two of these cor-
respond to growing evanescent waves, which are forbidden due to cau-
sality. This explains why the left-handed triplet is not allowed and the
phenomenon of spin-momentum locking is universal to evanescent
waves.

Fig. 2. Poincaré spheres for propagating waves and evanescent waves.
Propagating waves can have any arbitrary polarization state for a given
phase velocity. However, all fast decaying evanescent waves are circularly
polarized and lie on the south or north pole of the Poincaré sphere
(S3 � �1). Furthermore, the choice between these two points is locked
to the direction of momentum (�κ).

Research Article Vol. 3, No. 2 / February 2016 / Optica 120



prove that evanescent waves indeed possess a property that has
been overlooked. To analyze these textbook phenomena, we in-
troduce the concept of a local handedness for inhomogeneous
fields. We specifically plot the spatial distribution of the
Stokes parameter (S3), which depends on the local electric fields
and sheds light on the local handedness (polarization state) of the
fields. We note that our approach is different but equivalent to the
historic concept of the light beam tensor introduced by Fedorov
[16] and the recently developed concept of the spin density
[14,17,18].

A. Circular TIR (Golden Ratio Condition)

The simplest case where such a phenomenon can occur is when
evanescent waves are generated at TIR. We consider a wave bp
polarized in the bx–bz plane (TM) traveling from glass with index
n1 � ffiffiffiffiffi

ϵ1
p

into medium 2 with index n2 � ffiffiffiffiffi
ϵ2

p
, where we re-

quire ϵ1 > ϵ2 for evanescent waves to be supported. The electric
fields generated during TIR are well known and are depicted by
white arrows in Figs. 3 and 4. However, when overlaid against the
local handedness of the field an intriguing phenomenon comes to
light—the direction of propagation of the wave alters the relative
handedness of the evanescent field. The false colors in the same
figures depict the spatial distribution of the normalized Stokes
parameter (S3) and quantifies the polarization state of the field
at each point. In region 2, it is evident that the evanescent wave
possesses similar handedness at every point (orange region).
Furthermore, by comparing the counterpropagating cases be-
tween Figs. 3 and 4, we clearly see that the polarization state
of the evanescent wave is reversed and the Stokes parameter
changes sign. The insets of Figs. 3 and 4 elucidate this spin-mo-
mentum locking phenomenon for TIR.

We now show that the propagating waves inherit handedness
from the evanescent waves due to boundary conditions at the
interface. The phase between the perpendicular and parallel
components of an arbitrary (bp-polarized) electric field in

region 1, interfaced with an evanescent wave in region 2, must
satisfy �

E⊥

E∥

�
1

� �i
ϵ2
ϵ1

�
κ

η

�
2

at interface; (7)

where the � indicates oppositely traveling evanescent waves, and
the subscripts designate the field components in their respective
material regions. It should be stressed that this applies only locally
at the interface. However, this could have interesting conse-
quences for near-field optics since it implies that there is a pref-
erential handedness depending on the direction of propagation
when we couple to evanescent waves. We make the important
observation that perfect circular polarization is enforced (locally)
in region 1 when

ϵ1
ϵ2

�
�
κ

η

�
2

: (8)

We can now solve for the momentum and decay of the
evanescent wave that achieve this circular TIR. They are

κ2 � ϵ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2

ϵ21 − ϵ
2
2

r
k0; (9)

and

η2 � ϵ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2

ϵ21 − ϵ
2
2

r
k0: (10)

In the case of TIR, this local circular polarization is generated
in region 1 because there is a phase shift imparted to the reflected
wave, and the interference with the incident wave causes the com-
bined field to be locally handed. Last, we need to determine the
angle of incidence of the propagating wave that is required to ac-
complish this circular total internal reflection (CTIR) condition.
Using Snell’s law, it can be shown that the CTIR angle of inci-
dence θ1 � θCTIR is

sin�θCTIR� � 1∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ1∕ϵ2 − ϵ2∕ϵ1

p
: (11)

We note that, in this instance, θCTIR must necessarily be real,
which requires that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ1∕ϵ2 − ϵ2∕ϵ1

p
> 1. Therefore, there is an

Fig. 3. CTIR at interface between glass with n1 � 2 and air with n2 �
1 at the θCTIR condition. For waves traveling in the �x direction, the
evanescent wave in region 2 has right-handed spin-momentum locking
(inset). Note the wave in medium 1 has perfect circular polarization char-
acteristics close to the interface at this angle of incidence. The overlaid
false color plot is the spatial distribution of the normalized Stokes param-
eter (S3), which characterizes the handedness of the wave (degree of cir-
cular polarization) from −1 to 1 at each point.

Fig. 4. CTIR at interface between glass with n1 � 2 and air with n2 �
1 at the θCTIR condition. For waves traveling in the −x direction, the
evanescent wave in region 2 has left-handed spin-momentum locking
(inset). The plot illustrates that the evanescent wave spin has the opposite
sign as compared to the previous case because the momentum and spin
are locked.
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interesting limiting condition for local CTIR to exist, which is
when θCTIR → π∕2 (i.e., when the propagating wave in region
1 is parallel to the interface). This is equivalent to the limit when�

ϵ1
ϵ2

�
GR

� 1

2

�
1�

ffiffiffi
5

p �
≈ 1.618; (12)

which is the minimum allowable ratio of the permittivities for
CTIR to occur, and curiously, it can also be identified as the
golden ratio [19]. We term this the “golden ratio condition”
for local circularly polarized TIR.

This induced CTIR in region 1 is visible clearly in Figs. 3 and
4. Note that our choice of refractive indices satisfies
ϵ1∕ϵ2 � 4 > �ϵ1∕ϵ2	GR . The angle given by our analytical expres-
sion in Eq. (11) is θCTIR � 31.09°, and we have plotted the fields
for this incident angle. Close to the interface in region 1, the
Stokes parameter takes the maximal values of S3 � �1 (red
and blue regions). Thus the fields are perfectly circular polarized
close to the interface specifically for this angle of incidence.
Although phase propagation normal to the interface (bz) will alter
the degree of this polarization, the relative handedness between
forward and backward propagating waves is maintained. This
can be seen from the blue and red contours in region 1, where
rotation of the electric field vectors is reversed at every point in
space—which is in agreement of differing signs of S3.

B. Waveguides

Interesting spin-locking phenomena also occur when we consider
confined light in waveguides and optical fibers. The confinement
of light necessarily requires evanescent waves to be present, which
implies that there will be handedness imparted on the waveguide
and fiber modes through the boundary conditions. For planar
waveguides, there are even and odd solutions and the bp-polarized
electric field components (TM modes) inside the waveguide are
proportional to

E ∝
�
kz

	
sin�kzz�
− cos�kzz�


bx� ikx

	
cos�kzz�
sin�kzz�


bz�eikxx ; (13)

where the array inside the braces indicates the two separate sol-
utions. Note that the electric field components along the x and z
axes have a phase difference between them dictated solely by the
boundary conditions that maintain the transversality of the field.
If we consider a wave propagating in the opposite direction, i.e.,
change kx → −kx , the wave changes handedness. We see that
there is spin-momentum locking in waveguides since kx now con-
stitutes the momentum and also controls the relative phase be-
tween the orthogonal field components. The electric field
vector plots in Figs. 5 and 6 are overlaid on the spatial distribution
of the S3 Stokes parameters (false color plot) to illustrate the dif-
ferent spin (handedness) between two oppositely propagating
waveguide modes. We note that a similar explanation can be ex-
tended to the case of metamaterials [10]. This is discussed briefly
in Supplement 1, and a detailed derivation will be
presented elsewhere.

C. Optical Fibers

We now show that spin-momentum locking in optical fibers is
the fundamental origin of recent experimental observations in
which scattered light and spontaneous emission were directed
preferentially along the fiber [7,8]. The HE11 fundamental mode
operation is the most important case, so we quantify its degree of

polarization. To characterize our fiber mode we consider
weakly guided waves, Δ��n21−n22�∕�2n21�≈�n1−n2�∕n1≪1,
with a numerical aperture NA�

ffiffiffiffiffiffiffiffiffiffiffiffi
n21 −n

2
2

p
≈n1

ffiffiffiffiffiffi
2Δ

p
. For single-

mode HE11 operation, we require that V � 2π�a∕λ0�NA �
σ1

ffiffiffiffiffiffi
2Δ

p
< 2.405, where a is the radius of the fiber and σ1 �

k1a � 2n1π�a∕λ0� is the scaling parameter inside the core.
The HE11 is doubly degenerate in that we have two counter-

rotating angular momentum modes in the plane perpendicular to
the fiber-optic axis. We denote the electric and magnetic fields as
Em andHm, respectively, where the subscripts denote m � �1 or
m � −1. In the circular basis we define unit vectorsbem � �br� imbϕ�∕ ffiffiffi

2
p

, and clearly be− � be��. With a propagation
factor of exp�i�βz∕a − ωt�	 omitted, the electric and magnetic
fields can then be written as

Fig. 5. Waveguide mode at interface between glass with n1 � 4 and
air with n2 � 1. The width of the waveguide is 2k0d � 2. For waveguide
modes traveling in the �x direction, the evanescent waves in region 2
lock the handedness (locally) to �bs at k0z � 1 and −bs at k0z � −1. The
false color plot shows the spatial distribution of the normalized Stokes
parameter (S3) from −1 to 1 for the waveguide and illustrates the intrinsic
handedness of the evanescent waves. Furthermore, on comparison with
the counterpropagating waveguide mode, we see that the handedness is
reversed.

Fig. 6. Waveguide mode at interface between glass with n1 � 4 and
air with n2 � 1. The width of the waveguide is 2k0d � 2. For waveguide
modes traveling in the −x direction, the evanescent waves in region 2 lock
the handedness (locally) to −bs at k0z � 1 and �bs at k0z � −1.
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Em � E0

� ffiffiffi
2

p
βJ0�Xr∕a�bem � iXJ1�Xr∕a�bz

�
eimϕ; (14a)

Hm � −imH 0

� ffiffiffi
2

p
�σ1�2J0�Xr∕a�bem � iβXJ1�Xr∕a�bz

�
eimϕ

(14b)

for fields inside the fiber when r < a, where H 0 � E0∕�ωμ0a�
and

Em � N E0

� ffiffiffi
2

p
βK 0�Yr∕a�bem � iYK 1�Yr∕a�bz

�
eimϕ; (15a)

Hm � −imNH 0

� ffiffiffi
2

p
�σ2�2K 0�Yr∕a�bem � iβYK 1�Yr∕a�bz

�
eimϕ

(15b)

outside the fiber when r > a and N � �X∕Y�J1�X�∕K 1�Y�. Jn
and K n are the Bessel and modified Bessel functions of order n,
respectively. The normalized propagation constants are defined as
jβj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�σ1�2 − X2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�σ2�2 � Y2

p
and V2 � X2 � Y2. The

components of the Em and Hm fields have identical forms (up
to a proportionality constant), so we concentrate on the electric
type.

The above equations are commonplace in textbooks on fiber
optics. However, the differentiation between the angular momen-
tum and spin components of the HE11 mode has not been done
before. This can be done unambiguously by extending our con-
cept of local handedness of a wave to three dimensions. We con-
sider the Stokes parameter (S3) that characterizes circular
polarization. However, for the optical fiber, it has to be evaluated
for three-dimensional fields by considering pairs of orthogonal
directions. This leads to Stokes parameters Sz3 and Sϕ3 , which
can be interpreted as local circular polarization of the field with
handedness along the bz direction or bϕ direction. We concentrate
on the field components inside the core when r < a, but similar
expressions hold for r > a where the Bessel functions are substi-
tuted with the modified Bessel functions.

For the two m � �1 angular momentum modes, the Sz3
Stokes parameter evaluated with electric field components
orthogonal to the propagation bz direction is

�IAM �m � m2jE0j2β2J20�Xr∕a�; (16)

which we denote as the angular momentum intensity. The hand-
edness of this angular momentum is either positive or negative for
them � �1modes. This is valid even if we change the sign of the
propagation constant, i.e., if the HE11 mode moves along −bz.
Thus, both forward and backward propagating waves can have
either positive or negative angular momentum, as is expected.

However, a fundamental and intriguing asymmetry is noticed
for the Sϕ3 Stokes parameter evaluated using electric field compo-
nents orthogonal to bϕ. It is given by the expression

�IS�m � sign�β�2jE0j2jβjXJ0�Xr∕a�J1�Xr∕a�; (17)

which we denote as the spin polarization intensity. The direction
of this “spin” is in the unique bϕ direction and is seen to be in-
dependent of the sign of the angular momentum. Furthermore,
it is also locked to the momentum β since sign�β� � �1, leading
to fundamentally different behavior of forward and backward
propagating HE11 modes along the fiber. For forward momen-
tum sign�β� � �1, we have �bϕ transverse spin, and for

sign�β� � −1 we have −bϕ, regardless of which angular momen-
tum mode we are considering. Therefore, instead of four degen-
erate solutions, only two are allowed.

We emphasize once again that the spin-momentum locking
arises from the fact that growing solutions for evanescent waves
outside the optical fiber are discarded. These growing solutions
have the opposite spin direction for a given propagation direction
(Section 3). This shows we have spin-momentum locking even in
standard optical fibers, which is directly linked to the evanescent
fields necessary for confinement. Strictly speaking, we enforced
spin-momentum locking from the outset by permitting only
K n-type modified Bessel functions and discarding the In type,
since they exponentially grow as r increases. This causality re-
quirement with regards to fiber modes is the precise reason that
we have handedness imparted to the optical fiber.

The total electric field intensity is a sum of linear, angular
momentum, and spin intensities that arise from the properties
of Stokes parameters (S20 � S21 � S22 � S23). We thus have
I 2E � I 2AM � I 2S � I2L, where IE � jEj2 � 2jE0j2β2J20 �
jE0j2X2J21 is the total intensity of the electric field. Here, the lin-
ear polarization intensity is defined as IL � jE0j2X2J21, arising
due to the electric field component in the bz direction. We can
now analyze the fractional field intensity residing in the angular
momentum, spin, or linear polarization components. The nor-
malized polarization intensities for a weakly guiding optical fiber
are shown in the plot of Fig. 8. We also include a field vector plot
in Fig. 7 to help visualize the transverse spin component in the
HE11 mode.

D. Directional Quantum Emitter Coupling

All that being said, this intriguing symmetry breaking could
be exploited for applications in the field of quantum photonics.
One recent experiment has utilized cold atoms near optical
fibers to demonstrate directional waveguiding of spin-polarized

Fig. 7. Evolution of the polarization vector as it propagates in an op-
tical fiber with V � 1.5 and Δ � 0.1. We display the electric field at a
single point at r � a in the m � �1 HE11 mode to demonstrate the
transverse spin near the core–cladding region. As we can see, the electric
field rotates in the z plane as well as in the x–y plane, hence, there is a spin
component directed around bϕ (inset). Out of four possible degenerate
solutions, only two are allowed because of the decaying condition on
evanescent waves outside the core. Consequently, the HE11 mode of
the optical fiber has spin-momentum locking.
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spontaneous emission [8]. We show how this phenomenon is re-
lated to spin-momentum locking of the HE11 mode. Note that
our results can be expanded to an isotropic scatterer with circu-
larly polarized incident light or a chiral scatterer with linearly
polarized incident light.

Let us consider a left- and right-handed circularly polarized
source that has both electric and magnetic moments.
Following the semiclassical theory of spontaneous emission
[20–22], we approximate this chiral source to be�

JE �r�
JH �r�

�
�
� −iωδ3�r − r0�

�
p
m

�

� −iωδ3�r − r0�
�

p0
−im0

�be�e�iϕ; (18)

where the� indicates left- or right-handed circular polarization in
the cylindrical coordinate basis of the optical fiber. The coupling
strength (energy of interaction) into one of the HE11 modes is
then proportional to Am ∝ iω�p� · Em�r0� �m� ·Hm�r0�	.
Plugging in for r0 � 0, it can be shown that the magnitude of
the coupling strength (jAmj2) for each m � �1 mode is equal to

jAmj2 � C1

����sign�β�jβjωp0 � m
�σ1�2m0

μ0a

����2; (19)

where C1 is some positive proportionality constant. The angular
momentum quantum number m � �1 should not be confused
with the magnitude of the magnetic dipole jmj � m0. Also note
that the time averaged power along the fiber axis for each mode is
proportional to Pm ∝ jAmj2.

We notice the striking fact that this coupling factor of the
chiral emitter into the HE11 mode is direction dependent.
Hence, we will have asymmetrical power emitted in differing di-
rections along the fiber. The� polarization chiral emitter couples
only into the m � �1 mode and emits most strongly in the for-
ward propagating sign�β� � �1 direction while being weaker for
backward propagation sign�β� � −1. Conversely, the − polariza-
tion chiral emitter couples only into the m � −1 mode and
emits more strongly in the sign�β� � −1 direction rather than

sign�β� � �1. This means we can control the directional propa-
gation of waves and the specific angular momentum mode
(m � �1) we couple into by choosing either left- or right-handed
chiral emitters. This effect is maximal when the electric and mag-
netic dipole moments are tuned to have jβjωp0 � �σ1�2

μ0a
m0. For

weakly guided waves, jβj ≈ σ1, and it can be shown that maximal
coupling will occur when m0 ≈ Z 1p0, where Z 1 � Z 0∕n1 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0∕ϵ1ϵ0

p
is the wave impedance inside the fiber.

We now propose an approach to couple strictly to the trans-
verse spin components of the electric field with a transversely po-
larized electric source. This can have the advantage of not
requiring magnetic dipoles or chirality. We achieve this by tuning
the phase difference between two orthogonally oriented point
dipole emitters p � pxbx� ipzbz. This emitter is placed at the
location r0 � abx, where the spin intensity is maximum (see
Subsection 4.C). The transverse spin is unchanged between
angular momentum modes, so they will both contribute to the
propagation of the wave. The transverse coupling strength for
both m � �1 is equal to

jAmj2 � C2ω
2jsign�β�jβjJ0�X�px � XJ1�X�pz j2; (20)

where C2 is another positive proportionality constant. We see
again that there is dominance of the wave to be in the sign�β� �
�1 direction compared to the sign�β� � −1. The asymmetry in
coupling between the two directions is maximal when the dipole
strengths are adjusted to have jβjJ0�X�px � XJ1�X�pz . We illus-
trate these two unique quantum emitter couplings in Fig. 9 and
their orientation in the optical fiber.

E. Surface States

The last example is that of surface electromagnetic waves such as
Zenneck waves [23], Dyakonov waves [24], and SPPs that exist
at the interface of two materials. The necessarily evanescent
nature of the electromagnetic field will introduce very clear spin-
momentum locking in all these waves. We emphasize that such
polarization-dependent transport has been observed for the par-
ticular case of SPPs [5,6,9,14], but the universality and funda-
mental origin of the phenomenon has never been pointed out.

Note that surface waves are evanescent in both regions (see
Fig. 10) and, hence, will have global spin-locking where the hand-
edness of the wave will be invariant in each of the half-spaces. We
explain this by taking the example of SPPs that exist at the inter-
face of a metal and dielectric. Region 1 (−z) is metallic with a
relative permittivity ϵ1 < 0, and the dielectric in region 2 (�z)

Fig. 8. Normalized HE11 polarization intensities (I∕IE �0�) for an op-
tical fiber of V � 1.5 and Δ � 0.1. We see that the majority of the field
is concentrated in the IAM angular momentum component, but there is a
significant component of spin intensity (I S ) in the bϕ direction near the
core–cladding interface at r � a.

Fig. 9. Chiral emitter placed at r0 � 0 and transverse emitter placed
at r0 � abx inside the optical fiber. The intrinsic chirality of the HE11

mode opens possibilities for spin-controlled quantum photonics. We em-
phasize that this intrinsic chirality is universal and arises from the
evanescent waves outside the core.
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has a relative permittivity ϵ2 > 1. This results in the familiar
dispersion relation κ � k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ1ϵ2∕�ϵ1 � ϵ2�

p
.

We can now fully quantify the evanescent spin in terms of the
permittivities. Utilizing the expression for the circular Stokes
parameters (S3) derived in Eq. (5), this leads to

−�S3�1 � �S3�2 � 2

ffiffiffiffiffiffiffiffiffiffiffi
jϵ1jϵ2

p
jϵ1j � ϵ2

; (21)

where �S3�1 and �S3�2 are the bp-polarization Stokes parameters in
regions 1 and 2, respectively, and we are assuming the permittiv-
ities are purely real in this instance. As we can see, as jϵ1j → ϵ2,
the momentum κ → ∞ and the spin approaches perfect circular
polarization −�S3�1 � �S3�2 → 1, as expected. Also to reiterate,
the spin-momentum locking of evanescent waves means these
spins are flipped when the wave is propagating in the opposite
direction. To help visualize these phenomena, the electric field
vector plot for an SPP is displayed in Fig. 10 along with the “full”
SPP dispersion relation in Fig. 11 that includes the handedness of
the spin (in the dielectric region). Our approach provides an

intuitive explanation of this phenomenon observed in recent ex-
periments where chiral emitters or near-field interference from
electric and magnetic dipoles lead to unidirectional SPP propaga-
tion [5,6,9,22].

5. CONCLUSION

In conclusion, we have shown that evanescent waves possess in-
herent local handedness (spin) that is tied to their phase velocity
(momentum). We have proven this spin-momentum locking is
universal behavior since it arises due to causality and the complex
dispersion relation of evanescent waves. It is interesting to note
that recent work on topological photonics [25–28] has shed light
on the existence of surface states immune to disorder, and our
work will surely lead to a better understanding of those surface
states, as well. The QSH surface state has electrons with spins
locked to their direction of propagation but occurs only on
the surface (interface) of materials with spin-orbit coupling
(e.g., HgTe quantum wells). The electromagnetic surface state
curiously always possesses this property irrespective of the nature
of the material. This warrants a deeper investigation and simul-
taneously opens up possibilities for practical applications.
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