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Topological phases of matter arise in distinct fermionic and bosonic flavors. The fundamental differences
between them are encapsulated in their rotational symmetries—the spin. Although spin quantization is routinely
encountered in fermionic topological edge states, analogous quantization for bosons has proven elusive. To
this end, we develop the complete electromagnetic continuum theory characterizing 2+ 1D topological bosons,
taking into account their intrinsic spin and orbital angular momentum degrees of freedom. We demonstrate that
spatiotemporal dispersion (momentum and frequency dependence of linear response) captures the matter-mediated
interactions between bosons and is a necessary ingredient for topological phases. We prove that the bulk topology
of these 241D phases is manifested in transverse spin-1 quantization of the photon. From this insight, we predict
two unique bosonic phases—one with even parity C = £2 and one with odd C = =£1. To understand the even
parity phase C = %2, we introduce an exactly solvable model utilizing nonlocal optical Hall conductivity and
reveal a single gapless photon at the edge. This unidirectional photon is spin-1 helically quantized, immune to
backscattering, defects, and exists at the boundary of the C = +2 bosonic phase and any interface-even vacuum.
The contrasting phenomena of transverse quantization in the bulk, but longitudinal (helical) quantization on the
edge is addressed as the quantum gyroelectric effect. We also validate our bosonic Maxwell theory by direct
comparison with the supersymmetric Dirac theory of fermions. To accelerate the discovery of such bosonic
phases, we suggest two probes of topological matter with broken time-reversal symmetry: momentum-resolved
electron energy-loss spectroscopy and cold atom near-field measurement of nonlocal optical Hall conductivity.
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I. INTRODUCTION

Initial observations of topological phases of matter surfaced
with the quantum Hall effect (QHE), a discovery which

revealed that the transverse conductivity oy = n % is naturally
quantized [1-3]. e is the elementary charge of the electron and
h is the Planck constant. Here, n € Z is the electronic Chern
number and represents a global topological invariant. Being
a global property of the bulk electronic band structure, it is
insensitive to disorder within the material. Yet, in terms of the

photon with frequency @ and momentum &,

2
oy(0,0) =n—, (1)
h
it only describes the local static response w =k =0 and
contains no information of the high-frequency w > 0, short-
wavelength k > 0 behavior of the electromagnetic field. The
ac dynamical equivalent oy (w,0) of the conventional dc
conductivity oy (0, 0) is known as the optical Hall conductivity.
It is measured using the Faraday rotation angle (gyrotropic
response) and has shown plateaulike behavior up to THz
frequencies [4]. The purpose of this paper is to unravel the
global topological properties of the photon and the role of
spin-1 quantization in the generalized optical Hall conductivity
oy(w, k).
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Conventionally, topological materials have focused on
fermionic behavior, which display spin-1/2 polarized edge
states and integer quantization of the Hall conductivity [5,6].
However, spin-1 bosonic phases with broken time-reversal
symmetry (TRS) have recently been proposed [7-14] and
correspond to even integer Hall quantization. Pioneering re-
search in topological photonics has mimicked the fermionic
behavior using carefully structured pseudo-spin-1/2 photonic
crystals [15-19]. A few striking examples are gyrotropic
photonic crystals [20-22], Floquet topological insulators [23],
and bianisotropic metamaterials [24—26] which support chiral
photonic edge states. Similar pseudospin approaches utilizing
Haldane models on honeycomb lattices have led to Chern
insulators [27]. These are quantum Hall phases but with zero
field—realized in photonic crystals, circuit QED [28], and cold
atom systems [29]. Important work has also developed Chern
invariants for continuous photonic media with broken TRS
[30-33]. Nevertheless, the discovery of true spin-1 quantized
phases has remained an open problem, as well as the connection
between bosonic and photonic topologies. We solve both these
problems simultaneously which can open interesting avenues
for condensed-matter physics and photonics.

The essential difference between fermions and bosons is
revealed in their half-integer vs integer spins. This differ-
ence is directly reflected in single-particle geometric phases
[34,35] and arises from their rotational symmetries (R). Under
cyclic revolution, a fermion returns out of phase with itself
R(2m) = —1, meaning topological monopoles exhibit half-
integer quantization. Conversely, bosons return in phase under
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the same rotation R(27) = +1, signaling integer monopoles
in the band structure. Due to this critical distinction, fermions
and bosons constitute different topological classes which
are incommensurable with one another. Although a host of
naturally occurring fermionic phases have been discovered
[36], no bosonic equivalent has been found to date. In this
paper, we develop the theory of TRS broken bosonic phases
for light to accelerate their discovery.

We put forth the complete microscopic continuum theory
describing all 241D bosonic phases of the photon. We account
for the inherent spin-1 symmetries of the electromagnetic
field such that the bosonic properties emerge naturally. This
marks a distinct departure from previous attempts at building
topological field theories for the photon. We reveal that the
signature of these topological bosonic phases is bulk transverse
spin quantization [37-40]—in stark contrast to conventional
photonic media where transverse spin is a continuous classical
number. From very general symmetry arguments, we predict
two unique photonic phases, witheven C = £2orodd C = +1
parity.

We show the fundamental necessity of spatiotemporal
dispersion (momentum and frequency dependence of linear
response) to define global topological invariants in continuum
phases of matter. Spatiotemporal dispersion is a natural conse-
quence of matter-mediated interactions between bosonic fields.
We introduce an exactly solvable model, exploiting nonlocal
optical Hall conductivity oy (w, k), to unravel the topological
physics of the even parity phase C = +2. This phase has been
predicted in interacting bosonic systems and corresponds to a
single gapless photon at the edge. The unidirectional photon
exists at the boundary of the nontrivial gyrotropic medium and
arbitrary material interface, unlike any previously known edge
states in electromagnetism. It hosts many intriguing optical
properties, such as spin-1 helical quantization, anomalous
displacement currents, and robustness to disorder. We address
the contrasting phenomena of transverse quantization in the
bulk and longitudinal (helical) quantization at the edge as the
quantum gyroelectric effect (QGEE). To rigorously validate
our bosonic predictions, we directly compare this model to its
supersymmetric Dirac theory [41-44], highlighting the striking
similarities, but important differences, between spin-1 and
spin-1/2 topologies. Finally, we suggest experimental probes
to search for these bosonic phases of matter.

This article is organized as follows. In Sec. I we analyze
the linear response theory of 2+1D electromagnetism and
derive the regularized continuum Hamiltonian with broken
TRS. In Sec. III we study the rotational symmetries of this
Hamiltonian and discuss the physical implications of orbital,
spin, and total angular momentum of the collective light-matter
excitations. The following Sec. IV relates integer spin directly
to the Chern number and all topological bosonic phases of
the photon are found. Using an exactly solvable model, the
even parity bosonic phase C = +£2 is examined extensively.
Section V validates our predictions by directly comparing
the Maxwell model to its supersymmetric Dirac theory. This
procedure highlights the correspondence between traditional
fermionic phases and even parity bosonic phases, while also
elucidating the fundamental role of spin. Section VI presents
our conclusions and a discussion of how to search for bosonic
phases in gyrotropic plasmas and quantum wells. We anticipate

the development of new experimental tools to probe the
signatures of these spin-1 quantized photonic edge states.
The focus of this paper is TRS broken topological bosonic
phases which possess unidirectional edge states. As mentioned
above, this is fundamentally related to optical Hall conductivity
and gyrotropy in matter. However, TRS protected bosonic
phases are also possible and show counterpropagating edge
states [14]. This arises from antisymmetric magnetoelectricity
as opposed to gyrotropy. The hallmark of both these bosonic
phases is longitudinal spin-1 quantization at the edge. These
topologically protected edge states are emergent massless
photons with massivelike photons in the bulk material. The
rigorous validity of these topological bosonic phases follows
from supersymmetric Dirac theory and constitutes a one-to-one
mapping to the continuum fermionic phase. This direct analogy
between Dirac-fermions and Maxwell-bosons (see Fig. 1)
fundamentally requires spatiotemporal dispersion.

II. CONTINUUM TOPOLOGICAL PHOTONICS
A. 241D electrodynamics

In two spatial dimensions (and one temporal dimension),
the propagation of charge is restricted to the x-y plane. This
limits the degrees of freedom of both the electromagnetic field
and the induced response of a material (Fig. 2). Therefore, we
focus on strictly transverse-magnetic (TM) waves, meaning
there are only three unique components of the field. From first
principles (Appendix A 1), we derive the corresponding wave
equation of the 2D photon coupled to matter,

Hok) f = oM(w,K)f, f=|E,|, 2
H;

where f is the TM polarization state (wave function) of the
electromagnetic field. In the absence of matter, Hy(k) are the
vacuum Maxwell equations in momentum space,

) A 0 0 -k
Hok) =k S, +k8, = 0 0 Kk | 3
—ky, ke O

Notice that Hy(k) = k - S represents optical helicity, i.e., the
projection of momentum k onto the spin S. We identify these
spin-1 operators S, and § y that satisfy the angular momentum
algebra [S‘x, S’y] = iﬁz,

0 0 0 0 0 -1
S=10 0 1(, § =10 0 O],
0 1 0 -1 0 O
[0 —i 0
S,=1i 0 O0f. 4)
0 0 0
Here, (8.); j = —Ii€;j; is the generator of rotations in the x-y

plane and is represented by the antisymmetric matrix. S, will
be foundational when discussing spin-1 symmetries in two
dimensions.
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FIG. 1. Our work emphasizes the fundamental differences between 2+ 1D topological materials for Maxwell bosons and Dirac fermions,
which are characterized by their bulk spin quantum numbers. In two dimensions, the quantization axis is along z as all rotations occur in the x-y
plane. Both (a) photonic and (b) electronic topologies are connected to S, quantization at certain high-symmetry k points in the bulk material.
The distinction lies in their rotational symmetries (/R). Photons are bosonic particles and respect spin-1 statistics R(27) = +1, which possess
integer spin projections m = =£1, 0. Conversely, electrons are fermionic particles and respect spin-1/2 statistics R(27) = —1, which possess
half-integer spin projections m = ﬂ:%. This changes the interpretation of topological invariants and the observable phenomena of different

particles.

The linear response function of the 2D material M is
dependent on continuous variables w and k,

Exx  &xy  Xx D; = 8ijEj + Xinv
M@, K) = | €5, &y Xy |, ' ®)
*
xpooxp o ow| Be=XE AuH

which compactly represents the constitutive relations. We
include all possible material responses as a generalization—
for instance magnetoelectricity x; and birefringence in &;;.
However, based on symmetry constraints, we will show that
only certain parameters of M are important in the topological
classification.

B. Continuum response function

Alas, Eq. (2) poses a problem; it does not represent a proper
first-order in time Hamiltonian since the response function
M(w, k) is dependent on its own eigenvalue. Nevertheless, we
can prove thatitis derived from a first-order Hamiltonian by ex-
ploiting stringent symmetry properties. We demand Hermitic-
ity M = M such that the response is lossless. We also require
positive definiteness M = 9,,(wM) > 0 to ensure the en-
ergy density is non-negative and admits proper normalization
fTMf > 0. The response must be causal (Kramers-Kronig)
and obey the reality condition M(w, k) = M*(—w, —k),
guaranteeing the electromagnetic fields are real-valued [45].
Two additional constraints should also be considered for
realistic materials: stability at static equilibrium M (0, k) =

FIG. 2. Only transverse-magnetic (TM) waves propagate as
charge is restricted to the x-y plane (blue and red arrows denote the
fields). This limits the degrees of freedom of both the electromagnetic
field and the induced response of a material. Electromagnetic polar-
ization and magnetization response in a 2D material is shown with
the purple and yellow arrows. The electric and magnetic displacement
fields are the linear superpositionof D; = P, + E; and B, =M, + H.,.
Our focus in this paper is gyrotropic media which correspond to
optical (dynamical) Hall conductivity.

M(0,k) > 0, and the ultraviolet limit lim,_, o M(w, k) =
15. Here, 13 is the 3x3 identity matrix and the limit implies
transparency at high frequency w — 00, as the material cannot
respond to sufficiently fast temporal oscillations.

Combining all the above criteria, we find that the response
function can always be decomposed as a discrete summation
of oscillators [27,30,46],

Clkcak

Ok (0 — Wgx)

M, k) =15 — Z

o

(6)

o labels any arbitrary bosonic excitation in the material,
such as an exciton or phonon, which couples linearly to
the electromagnetic fields via the 3x3 tensor Cyk. wgek iS
the resonant energy of the oscillator and corresponds to a
first-order pole of the response function. Note both C,x and
wyk are in general k dependent. We emphasize that the re-
sponse function is consistent with previous work on gyrotropic
plasmas [47,48]. However, our key advance is that the tensors
Cuk, characterizing the collective light-matter excitations, carry
information of spin and orbital angular momentum.

C. Continuum Hamiltonian

A detailed derivation of the continuum electromagnetic
Hamiltonian H (k) is presented in Appendix B. To accomplish
this, we expand the response function M(w,K) in terms
of three-component matter oscillators . These represent
internal polarization and magnetization modes of the material,

Cu
Yo = ;f’

W — Wyk

wwa = wakwa + Cozkf- (7)

We now define u as the generalized state vector of the
electromagnetic problem, accounting for the photon f and all
possible internal excitations ¥,

HK)u = wu, u:[f v Y ...]T, ()

which satisfies a first-order Hamiltonian wave equation. No-
tice that contraction of u naturally reproduces the energy
density upon summation over all degrees of freedom ufu =
fIMf, with M = 3, (wM) > 0always positive definite. The
continuum Hamiltonian H (k) acting on u is given concisely
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as
Ho(k) + >, oo Clkcak ka Cik

Cix Wik 0
H(k) = Cox 0 Wk

(€))

This eigenvalue problem generates the complete spectrum of
quasiparticle eigenstates,

Hyupx = opxltnk, (10)

and the eigenstates are normalized to the energy density
u;kunk = f,jk/\;l(w,,k, k) fax = 1. Moreover, the.eigeneper-
gies w,k are the n nontrivial roots of the characteristic equation,

det[Ho(k) — oM(w, k)] =0, o = w,(k), an

proving that the response function M (w, K) is derived from a
first-order Hamiltonian H (k).

D. Continuum regularization (one-point compactification)

Our goal is to develop a continuum topological theory that
accounts for both spatiotemporal dispersion and the inherent
bosonic properties of light. Due to the unbounded nature
of the momentum space R?, continuum Chern numbers are
usually ill-defined. Nevertheless, as long as the system is
properly regularized, continuum field theories are possible and
can be incredibly powerful tools to study long-wavelength
topological physics [49-51]. A necessary condition is one-
point compactification of the momentum space [52—-54], which
governs the high-k asymptotic behavior of the Hamiltonian.
This requirement is well understood in condensed matter and
demands the Hamiltonian approach a directionally indepen-
dent value,

lim H(k) — H(k), (12)

where k = vk - k is the magnitude of the wave vector. In this
way, all limits at infinity are mapped into the same point and
satisfy a “periodic” boundary condition. The momentum space
is closed and topologically equivalent to the Reimann sphere
R? ~ §? (Fig. 3). Hence, Chern numbers are quantized. A
rigorous proof is presented in Appendix C.

This constraint has important implications in continuum
photonic media. Since Maxwell’s equations are strictly first or-
der in spatial derivatives [Eq. (3)], one-point compactification
can only be satisfied by introducing nonlocality [55,56]. Non-
locality (or spatial dispersion) is the momentum dependence
of linear response—commonly ignored in photonics problems,
dc transport measurements, as well as Faraday rotation experi-
ments. However, we strongly emphasize that the high-k behav-
ior cannot be neglected even in the long-wavelength continuum
theory. These deep subwavelength components encode global
information of the fields and are essential to properly describe
the topological physics. By exploiting rotational symmetry,
we will show that the asymptotic behavior of the Hamiltonian
H (k) and by extension, the response function M(w, k), is
naturally regularized and predicts bosonic phases of matter.

FIG. 3. One-point compactification of the momentum space R? ~
S? over which the topological quantum numbers are defined. When
the Hamiltonian is properly regularized, the planar k space is
topologically equivalent to the bounded Reimann sphere. k, = 0 and
k, = oo are the rotationally invariant (high-symmetry) points on the
sphere, passing through the z axis. This procedure is necessary to
ensure Chern quantization in continuum topological field theories
and fundamentally requires nonlocal photonic media.

III. ROTATIONAL SYMMETRY
A. Definition of orbital, spin, and total angular momentum

If the two-dimensional crystal has a center (at least threefold
cyclic [57,58]), the continuum Hamiltonian is rotationally
symmetric about z,

R'H(RK)R = HKk), RQ2r) =13, (13)

and the eigenenergies w = w, (k) depend only on the magni-
tude of k. Note that R is diagonal in u, meaning the photon
and each oscillator is rotated individually, f — R f and ¥, —
R, In this case R(0) is a continuous rotation,

A cosf sinf O
R(6) =explifS;] = | —sinf cos® 0], (14)
0 0 1

and can be expressed as the exponential of the spin-1 generator
(S'z),-j = —i¢;j;. This represents an element of SO(3) in the
subspace of R? [59], as all rotations occur in the x-y plane.
We stress that the vector representation is bosonic, meaning
the quasiparticles return in phase under cyclic revolution
RQ2mr) = 1;3.

Since the Hamiltonian possesses a continuous rotational
symmetry, the total angular momentum (TAM) is conserved,

[J,HK)] =0, J =L, ,+38.. (15)

Equations (A 13) and (15) are equivalent statements in this con-
text. Here, L, is the orbital angular momentum (OAM) operator
in 2D k space and can be expressed in polar coordinates
as
. a d
L, =—iky— +iky,—
‘ dky, Ok,
Eigenstates of the OAM are well known and represent quan-
tized azimuthal charges,

Lty =1,

= —id,. (16)

|l) = exp(ild), a7)

where [ € Z is any integer.
Conversely, eigenstates of the spin angular momentum
(SAM) represent states of quantized polarization, transverse
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to the x-y plane,

S.e = me. (18)
The matrix form of S. is given in Eq. (4). For photons, the spin
is an integer m = =1, 0 and takes one of three discrete values.
First, we have the m = =1 spin states,

1
€L = — +i s

V2|0

e are resonant electric (H, = 0) counter-rotating states. Sec-
ond, we have the m = 0 spin state, which is resonant magnetic
(E; = 0) and irrotational,

S.e. = +ey. (19)

0
eo= |0, S.e=0. (20)
1

A visualization of the quantized spin-1 states is displayed in
Fig. 1(a) and this is compared to quantized spin-1/2 states in
Fig. 1(b). In Sec. IV, we will prove that these spin quantized
eigenstates naturally arise at high-symmetry Kk points in 2+ 1D
bosonic phases.

B. High-symmetry points and gauge singularities

At an arbitrary momentum Kk, the quasiparticles u, are not
eigenstates of L, or §,. Instead, they are eigenstates of the total
angular momentum J, = L, + S,

jzunk = jnunka jn € Z, (21)

where j, is an integer for bosons. Since J. is a differential
operator, the choice of j, represents a particular Berry gauge
for the eigenstates. This gauge is single-valued for all k with the
possible exception of two points, k, = 0 and k, = oo. These
are called high-symmetry points (HSPs). At these specific
momenta, the Hamiltonian is rotationally invariant [60],

R'H(k,)R = H(k,), [S., H(k,)]1 =0, (22)

which follows immediately from Egs. (13) and (15). In the
continuum theory, k, =0 is a HSP because the origin al-
ways rotates into itself. Owing to one-point compactification
[Eq. (12)], k, = oo is also a HSP. This is clear by direct
inspection of the Riemann sphere in Fig. 3. A rotation in the
plane of R? rotates S? about its axis, keeping both k » =0and
k, = oo fixed. Invariance at k, = oo is therefore imperative to
describe continuum topological theories.

AtHSPs the SAM of any eigenstate u,, is quantized and this
is guaranteed by symmetry [Eq. (22)]. Still, the Berry gauge
may be multivalued here due to the OAM—known as a phase
singularity [61],

Jim u, () = wy(kp)explily k)l (23)

Sotn (k) = my(kpu, k), (24)

where j, = [,(k,) + m,(k,) at HSPs. We come to an impor-
tant revelation from Eq. (23). If the spin does not change within
the eigenstate dispersion m, (0) = m,(c0), we can remove
the phase singularity at both points simultaneously, /,(0) =

l,(00) = 0, such that the Berry gauge j, = m,(0) = m, (c0)
is single-valued for all k.

However, if the spin changes within the dispersion m,, (0) #
m,(00), this procedure is impossible. The Berry gauge is
always multivalued because the singularity /,(k,) # 0 cannot
be resolved at k, = 0 and k, = co simultaneously. This is
a nontrivial topology. The physical interpretation is simple
but profound; since the TAM is conserved for each eigenstate
Aj, =0, the OAM Al, = [,(00) — 1,(0) # 0 must change to
compensate for the SAM,

Al, = —Amy, = mp(0) — my,(00). 25)

We will now prove that Eq. (25) fundamentally defines the
Chern classification of 241D bosonic phases.

IV. CONTINUUM TOPOLOGICAL BOSONIC PHASES

A. Continuum photonic Chern number

Utilizing the eigenstates of the Hamiltonian in Eq. (10), we
obtain the Berry connection by varying a quasiparticle with
respect to the momentum,

An(K) = —iu! | Bt (26)

Applying the curl produces the gauge invariant Berry curvature
F,(k) =7 [0k x A,(k)]. The Chern number C, is a global
topological invariant and is traditionally found by integrating
F,, over the 2D Brillouin zone—i.e., the torus T? = S' x S!.
For continuum theories, we integrate over the entire 2D
momentum space R?,

C, = L / / F, (k) d’k. 27)
27 R2

When properly regularized, the planar manifold is topologi-
cally equivalent to the Riemann sphere R? ~ §? and the Chern
number is quantized (Appendix C).

Although photonic Chern numbers have been defined,
neither the high-k behavior nor the inherent bosonic properties
have been addressed. With this in mind, we return to the Berry
connection A, in polar coordinates dx = Rak =+ 43345,

A, (k) = KAS (k) + $ A7 (k). (28)

Due to rotational symmetry, the polar components of A,
depend only on k. Furthermore, we can connect the Berry
potential A,f directly to the OAM,

AP (k) = —iu! | gt = (L2),. (29)

Here, (L), is the expectation value of the OAM for the nth
eigenstate. This corresponds to a Berry curvature F,, of

Fo(k) = (L) (30)

When integrating over all momenta d’k = dkd¢, we find that
the continuum Chern number C,, is determined solely by the
phase singularities at HSPs,

o0
c, =/ dk O (Loh = (Ll = Aly, (BD)
0

precisely the change in OAM. Substituting for Al, = —Am,, in
Eq. (25), we attain an elegant expression for the Chern number,

Cn = Aln = mn(o) —my (OO) (32)
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Equation (32) is one of the central results of this paper and is
valid for both fermionic and bosonic representations. Essential
differences between the two are immediately apparent.

For a spin-1/2 electron, quanta take one of two half-integer
values,m, = & % Consequently, we find only one truly distinct
fermionic phase,

fermion: C, = =%1,0. (33)

However, for the spin- 1 photon, quanta take three integer values
m, = %1, 0. We discover two unique bosonic phases,

boson: C, = +2, +1,0. (34)

One with even parity C,, = +2 and one with odd C, = =£1.
Even parity corresponds to a change from m,(0) = £1 to
my(00) = F1 at HSPs. This phase is familiar in interacting
bosonic systems and is identified with a single gapless boson
atthe edge [8—13]—not two as we might expect from fermionic
Chern number arguments. Odd parity bosonic phases are quite
exotic in this regard [62,63]. This phase corresponds to a
change from m,,(0) = {0, £1} to m, (c0) = {£1, 0} at HSPs.

B. Nonlocal regularization of the response function

We now derive the asymptotic behavior of the Hamiltonian
H (k) to ensure the continuum theory is properly regularized
at k — oo. This will help us discover the precise form of the
response function M (w, k) and the order of nonlocality nec-
essary to describe a topological field theory. Nonlocality plays
two equally important roles in this context—it distinguishes
between trivial and nontrivial phases. If high-k components
are ignored, it is impossible to define either of these phases in
the continuum.

From Egs. (6) and (9), rotational symmetry implies the
coupling tensors obey R~!C,(RK)R = C, (k) and the oscil-
lator resonances w, (k) depend only on k. We find the exact
expression of C, (k),

Co(k) = co(k)k @k +dy(k)k - S+ Gy (k),  (35)

where c,(k) and d, (k) are scalars. It is easy to check that
the tensors also commute with [fz, Cy (k)] = 0, conserving
TAM. c, (k) introduces a nonlocal birefringence in ¢;; and
dy (k) is a type of nonlocal magnetoelectricity x;. Both terms
are permitted by symmetry but neither is important, as all
contributions besides G, (k) vanish identically at k, = 0 and
k, = oo. This is because G, (k) is the only rotationally invariant
component of C,(Kk), which defines the topology,

R7'Gu(k)R = Gu(k),  [S:, Ga(k)] = 0. (36)
The Hamiltonian in Eq. (9) takes the following form at HSPs:

. i i
2 Dk, g(xk,, Gak, glkp ng[,

Gk, Wi, 0

Hkp) = G, 0 w2k

(37

Notice the vacuum Maxwell equations Ho(k) play no role
in either limit; the Hamiltonian is governed entirely by the
material response at HSPs. Nevertheless, this imposes pivotal

stipulations on the asymptotic behavior. The largest powers in
k must arise from G, as these terms dominate at exceedingly
large momentum k — oco. Consequently, Gy and wy require
quadratic nonlocality o k> at minimum, since the vacuum
fields Ho(k), which are linear in k, must be outpaced in the
k — oo limit.

By extension of Eq. (37), the response function is regular-
ized and rotationally invariant at HSPs,

[S., M(w, k,)] = 0. (38)

Upon summation over all oscillators describing the linear
response, M takes a remarkably simple form,

gl kp gctk ”

a)otk[, ((,() - a)ak,,)

M@, ky) =15-)

o

& ig O
=|—-ig ¢ O0f, 39
0 0 u

where all parameters are evaluated at k,. Here, ¢ and p are
the conventional scalar permittivity and permeability of a 2D
material. g is a generalized gyrotropic coupling which breaks
both parity and time-reversal symmetry.

Although the condition at k, = oo is a mathematical requi-
site, it makes perfect sense physically when we acknowledge
that the continuum theory is simply an approximation of the
underlying crystal lattice. In reality, the momentum can never
reach arbitrarily large values. As the momentum approaches
the scale of the lattice constant ka ~ 7, the wave approaches
a Bragg condition. These are HSPs in the reciprocal lattice
[57-60] so the continuum theory must encode this behavior.
Accordingly, the k — oo limit should be interpreted as a Bragg
resonance.

C. Transverse spin quantization of the photon

We go one step further to uncover the precise origin of the
spin-1 eigenvalues m,, (k,,), the spin states e, and their relation
to the response function M. At HSPs, the SAM expectation
value is represented as

(800 = mu(kp) = ul (kp)S.u (kp). (40)
Using Egs. (7) and (36), this can be simplified to yield

mn(kp) = fyj(kp)M(wn(kp)a kp)Szfn(kp)~ (41)

We note that precisely at HSPs, the quantum of spin m,, (k)
is determined entirely by the photonic component f,(k,)
of the eigenmode u,(k,)—but not the coordinates of the
matter oscillations . Utilizing the normalization condition

T k) M(@n(ky), kp) fr(kp) = 1, Eq. (41) leads to
S, fulky) = my(kp) fu(ky). (42)

This indicates that the electromagnetic wave function f must
be a spin state f,(k,) oc e at HSPs [Eq. (18)].

Our problem reduces to finding the eigenstates of the photon
at HSPs and directly evaluating their spin eigenvalues. We
return to the characteristic equation in Eq. (11), which defines
the photonic wave function f. As k — 0, the vacuum equa-
tions vanish identically, Ho(k) — 0. Moreover, the response
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function is regularized and includes quadratic nonlocality oc k>
at minimum. As k — oo, the vacuum fields do not contribute
Ho(k) — 0. Therefore, a nontrivial solution exists w, (k,) # 0
if and only if it satisfies

det[M(wy(k,), kp)] = 0. (43)

Equation (43) represents the threshold condition at k, = 0 and
the Bragg condition at k,, = oo for any particular eigenstate n.
To allow for nontrivial solutions M f = 0 in Eq. (39), one of
three possible conditions must be fulfilled,

g(@nthky). ky) _
e(@n (k). kp)

We see that the photonic wave function is clearly a spin-1
eigenstate f,(k,) oc e at HSPs. The gyrotropic constraint gives
us counter-rotating spin states S.e4 = d-e. with eigenvalues
my(k,) = £1, while the magnetic constraint gives us the
irrotational spin state S.ey = 0 with eigenvalue my(k,) = 0.
Physically, these conditions at HSPs correspond to gyrotropic
or magnetic plasmon resonances in the bulk 2D material. In a
lattice theory, the resonance at k, = 0 describes the response
at the I" point, while k, = oo describes the behavior near the
edges of the Brillouin zone.

The meaning behind each topological bosonic phase is now
revealed. In the even parity phase C,, = 2, a gyrotropic mode
dominates but the handedness of the plasmon changes at HSPs,
g/e = £1 — F1. If the handedness does not change as k —
0o, the phase is trivial C,, = 0. The odd parity phase C,, = £1
is very different however. Instead, the mode changes from a
magnetic plasmon p = 0 to a gyrotropic plasmon g/e = +£1
at HSPs. In the following sections, we restrict our discussion to
the even parity phase C,, = 2. The odd parity phase C,, = £1
is significantly more complicated and will be dedicated to a
future paper.

£1, or u(wa(ky), k,)=0. (44)

D. Even parity bosonic phase: C = +2

We adopt an exactly solvable model to unravel the low-
energy topological physics of this phase. We let the response
function be rotationally invariant [S’Z,M(w,k)] =0 at all
momenta, while also assuming ¢ = const > 1 is dielectric
and the response is nonmagnetic x4 = 1. In this case, all the
physics is captured by the gyrotropic coefficient g, which is
the high-frequency analog of the dc Hall conductivity,

g k) = 210
w

on(k) =09 —oa(ka)*>.  (45)

oy (k) is a nonlocal Hall conductivity [64]. oy is the static
response and o, characterizes the momentum dependence
(scaled to the lattice constant a). At low energy w — 0, this is
the only admissible form of g # 0 [47,48]. Due to the reality of
the electromagnetic field M*(—w, k) = M(w, k), gyrotropy
must always be odd in frequency g(—w, k) = —g(w, k). This
means a first-order pole at w = 0 is permissible and corre-
sponds to nonzero Hall conductivity wg(w, k) =0y (k) #O0.
The energy density is positive definite M = 3, (0w M) =
diag[e, ¢, 1] > 0 and nonsingular at v = 0.

We highlight important aspects of our model and the
connections to experimentally measured gyrotropic responses.
First, we deal with Hermitian systems so the imaginary

vacuum perturb

topological

oulk) =y ou(k)=0

27
QGEE
Ly
e = —2

FIG. 4. Schematic of the exactly solvable topological model. In
vacuum, Maxwell’s equations can be written in the form Hy(k) =
k - S, which captures both the spin-1 behavior and linear dispersion
of the massless photon. The gyrotropic medium perturbs the linear
dispersion and induces a bulk band gap near zero frequency. In this
case, the perturbation is a nonlocal Hall conductivity oy (k) = 09 —
o (ka)?, which behaves identically to the effective mass of the Dirac
equation. If oy (k) = 0 passes through zero at some finite momentum,
the medium is topological. The nontrivial phase C = 2 corresponds to
a gapless unidirectional photon at the boundary, dubbed the quantum
gyroelectric effect (QGEE). We strongly emphasize that this model is
validated by direct comparison with the supersymmetric Dirac theory
for continuum fermions.

g

part of the dielectric permittivity is zero Im[e] = o/w = 0.
Therefore, no dissipative currents exist in this system and the
gyrotropic coefficient is related only to a dissipationless Hall
current. Experimentally measured variables connecting to the
gyrotropic coefficient, such as Verdet constants, are highly
frequency dependent and this is consistent with our model.
Furthermore, the zero frequency behavior of the gyrotropic
coefficient g = oy /w is in agreement with first-order poles in
standard models of conductivity Im[e] = o/w.

Remarkably, the quadratic spatial correction to oy is
sufficient to describe a topological photonic phase and the
continuum theory is regularized at k — oo. The interpretation
is particularly simple in this context. At long wavelengths
oy (k — 0) — oy, the Hall conductivity induces circulating
currents of a specific handedness (clockwise or counterclock-
wise), but at short wavelengths o (k — 00) — —0o,(ka)?, the
handedness can reverse directions. We will show that when oy
switches sign, the phase is nontrivial.

E. Bulk (bosonic Chern insulator)

In vacuum, the photon is massless and therefore linearly
dispersing w = k. This is the photonic (spin-1) equivalent of
a Dirac point and arises naturally from Maxwell’s equations
Hok)=k-S =k, S, + kyﬁy, as mentioned in Sec. II. By
introducing the Hall conductivity, the linear dispersion of
bulk waves fundamentally changes—a gap is formed at zero
frequency w = 0,

2

k
e k) = k2 + 710, (46)
where o acts identically to an effective photon mass [41,42]. &
governs the effective speed of light. A schematic of the vacuum
and bulk dispersion is displayed in Fig. 4.
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O

FIG. 5. Topological phase diagram of the nonlocal Hall model
oy(k) = 09 — 05 (ka)?>. C = sgn[oy] + sgn[o,] corresponds to the
Chern number of the positive frequency band w > 0. The Chern
number of the negative frequency band w < 0 is exactly opposite
—C. When o0y0, > 0, the photon is in a nontrivial bosonic phase
C = %2, while 0y0, < 0 is a trivial phase C = 0. In the continuum
theory, trivial and nontrivial phases can only be distinguished by
incorporating nonlocality o, # 0.

There is only one positive frequency @ > 0 eigenstate as-
sociated with this system and is expressed in polar coordinates
as

E
fo= | By | = — ("HR+'«$+'kA) SONCY

= = —| — l 1—Z)e".
k Hi «/28 Ew w

fx is normalized to the energy density 1 = flj./\;l Jfx and is
written in a fixed Berry gauge defined by the TAM J. fy =
Jfx- We now show that the photon in this eigenstate exhibits
transverse spin quantization at HSPs, which is independent
of the chosen Berry gauge. From Eq. (47) above, we have
S‘zf(k,,) = m(k,) f (k) at the plasmon resonances,

_ g(w(kp)v kp) _ 0‘H(kp)

e(w(ky), kp)  ewlky)
Since ¢ is a constant, the eigenvalues are determined solely by
the long- and short-wavelength behavior of the Hall conduc-
tivity, m(0) = sgn[op] and m(oco) = —sgn[o>], giving a Chern
number of

C =m(0) — m(oc0) = sgn[op] + sgn[o>]. 49)

m(kp) = sgn[op (kp)].  (48)

A nontrivial phase corresponds to opo, > 0, which can be
C = £2 depending on the signs of oy and o,. This is the
simplest realization of a bosonic Chern insulator [65]. It is
equally important to note that opo, < 0 corresponds to a
trivial phase C = 0. Distinguishing between trivial C = 0 and
nontrivial C = £2 phases is only possible by incorporating
nonlocality o, # 0. A topological phase diagram of this system
is presented in Fig. 5.

In the nontrivial phase, there is a point where the Hall
conductivity oy (k) =0 passes through zero—precisely at
ka = /oy/o,. The zero must occur for the spin to change
handedness and can only be removed by a topological phase
transition. This also puts an approximate bound on the Hall

positive band

C=2

o
&)

spin-1
quantized —»

edge band

frequency, w
o

-0.5

C=-2

negative band

41 05 0 05 1
wave vector, k

FIG. 6. Continuum band diagram w(k) of the even parity C =2
topological bosonic phase. The negative frequency branch has a
Chern number of —2; necessary for the total summation to vanish
2 —2=0. As an example, we have let 6p = 0,a®> = 1 and & = 2.
The unidirectional edge state is spin-1 helically quantized and touches
the bulk bands precisely where the nonlocal Hall conductivity passes
through zero oy (k) = 0. At this point ka = /0y /0, the edge state
joins the continuum of bulk bands. Notice that no edge solution exists
for k, — —k, and the photon is immune to backscattering.

parameters. As long as +/o0p/0y < 7 the continuum theory
is valid and the zero occurs within the Brillouin zone. As an
aside, we note the negative frequency band w < 0 has a Chern
number of —C—exactly the opposite of the positive band. This
is necessary to ensure the summation over all bands vanishes,

Y, Co=0.

F. Edge (quantum gyroelectric effect)

Finally, we analyze the unique edge state of this
bosonic phase, which has no counterpart in traditional sur-
face photonics—such as plasmon polaritons, Tamm states,
Dyakonov or Zenneck waves [66]. This is because topolog-
ical boundary conditions are captured by nonlocal (spatially
and temporally dispersive) optical constants. In conventional
problems, nonlocality introduces additional boundary condi-
tions (ABCs) [55,67] which need to be satisfied to uniquely
determine the electromagnetic field. The photonic edge state
discussed here is fundamentally different in this context. The
behavior of the field outside the medium x < O becomes
irrelevant due to topological open boundary conditions f(x =
07) = 0[49-51,68]. Open boundary conditions are commonly
encountered in topological electronics [69,70] but is surprising
when dealing with photons. To be localized at the edge, all
components of the field must decay into the bulk f(x = c0) =
0 as x — oo and simultaneously disappear on the edge. The
exact bulk and edge dispersion is plotted in Fig. 6 and a diagram
of the topological edge state is displayed in Fig. 7(a). We
strongly emphasize that these special solutions point to the
first unified topological theory of Maxwell bosons and Dirac
fermions.

The specific phase C = £2 will determine if the unidirec-
tional photon is forward or backward propagating; forward
for C =2 and backward for C = —2. We stress again that
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Spin-1 quantized
k-E=0

Open boundary cond.

/=01 =0

0.4

0.3

energy density, u(x)
o
Y

°
=

0 2 4 6
distance, x

Spip-1/2 quantized

k sk-oy =3¢
Y

Open boundary cond.

P(z=07)=0

0.5

0.4

o o
S w

probability density, 1y

0 2 4 6 8
distance, x

FIG. 7. (a) Topological edge state of the even parity C = 2 bosonic phase. The photon is spin-1 helically quantized k - E = 0 and satisfies
open boundary conditions at the interface f(x = 0%) = 0. This ensures the edge state is immune to boundary defects and can exist at any
interface—even vacuum. (b) Topological edge state of the C = 1 fermionic phase. Like the photon, the electron is spin-1/2 helically quantized
%f( oY = %1// and satisfies open boundary conditions ¥ (x = 0%) = 0. (c) Normalized energy density u(x) = fTM f of the unidirectional
photon as a function of distance x, at a momentum of k, = 0.5. As an example we have let 0y = 0,a> = | and & = 2. Notice the fields are
identically zero at x = 0 and the edge state exists at the boundary of any interface. (d) Probability density v Ty of the electronic edge state,
where we have let Ag = Aya®? = 1 and v = 0.5 as an example. The probability density is evaluated for a momentum of k, = 0.5.

for either C = %2, there is only one bosonic solution at the
boundary—not two. In either case, the solution in the x > 0
half space has a similar form f.(x, y) = fi(x)e'®” . Inserting
into the wave equation and applying open boundary conditions,
the topological edge state emerges,

k (o)) (o)
wi:ijyg’ — /0—2 < kya < /E, (50a)
E,
frx)=|Ey | = foRFe)(e " —e ™). (50b)
H, N

A solution only exists in the nontrivial phase opo, > 0,
confirming our theory. Notice the group velocity vy =
dwy /dky = £1/4/¢ is constant and the edge state can propa-
gate in opposite directions depending on the phase C = £2.
Moreover, since no solution exists for k, — —k,, the photon
is immune to backscattering. The decay lengths 1, and 17, are
found from the two quadratic roots,

Mo (Ve £ \Je +doaalortkya)? — oo} (51)

T 2a2%|on|

which determine the degree of confinement at a particular
wave vector k,. A plot of the electromagnetic energy density
is presented in Fig. 7(c). Intriguingly, the field is completely
transverse polarized k - E = E y = 0 and helically quantized

along the direction of momentum k,,

ta
f.iS—_yfi =vy = j:L. (52)
fAIMfe Ve

k-S= Sy is the spin-1 helicity operator and quantization lies

in the x-y plane. Consequently, the C = 2 phase corresponds

to a massless (linearly dispersing) “spin-up” photon while the

C = —2 phase is a counterpropagating “spin-down” photon.

Note that the edge wave is S'y helically quantized for all

momenta and is distinct from transverse S; quantization of
the bulk waves, which only occurs at HSPs.

G. Anomalous displacement currents

We also discover an anomalous edge current [71] propagat-
ing parallel to the interface,

Jy(x, ¥) = F/e folnie ™ — pae” %)™ (53)

The displacement current is induced by the nonlocal Hall
conductivity,

Jy = =8 H, = —(00 + 02a*VHE,, (54)

and is highly conductive near the interface J,(x =07)#0.
However, a compensating current is generated in the bulk
x > 0, such that the total induced charge is identically zero
Jor Jy(x)dx = H.(0T) — H.(c0) = 0. Notice that charge
neutrality is only guaranteed by the open boundary condition
H,(x =0%) =0, providing a profound physical basis for

023842-9



TODD VAN MECHELEN AND ZUBIN JACOB

PHYSICAL REVIEW A 98, 023842 (2018)

Metallic edge current
@ Jy(z=0")#0
J y(x =07) #
)
Y Conserved current

/ Jy(x)dz =0
0+

current density, J,(z)

distance, z

FIG. 8. (a) Anomalous displacement current at the edge of the
topological photonic medium. (b) Real current density J,(x) as a
function of distance x, for a momentum of k, = 0.5. We have let
09 = 0»a® = 1 and & = 2 as an example. The displacement current is
generated by the nonlocal Hall conductivity and is highly metallic near
the interface J,(x = 0%) # 0. However, the total current is conserved
foof Jy(x)dx = 0 which is clear from the positive (red) and negative
(blue) charge density. Since the net charge is zero, this phenomenon
can be interpreted as a propagating dipole bound to the edge of the
material—with an intrinsic dipole moment p, = foof xp(x)dx.

topological protection. The photonic edge state must exist if
the medium is to remain neutral—there is no other option.

From the continuity equation wp = k, Jy, this phenomenon
can also be interpreted as a propagating dipole bound to the
edge of the material,

Py = / xp(x)dx = —s/ E.(x)dx = efo(ny" —n5").
o+ 0t
(55)

with an intrinsic dipole moment p, normal to the interface. The
intriguing connection to the parity anomaly will be discussed
in a future paper [72,73]. The dipole is continuous xp(x) and
shields the electromagnetic field between regions of positive
and negative charge density. This unusual effect allows highly
confined photons to propagate at the boundary unimpeded,
impervious to defects. A visualization of the anomalous current
is displayed in Fig. 8.

V. DIRAC-MAXWELL SUPERSYMMETRY: DIRECT
CORRESPONDENCE BETWEEN FERMIONIC AND
BOSONIC PHASES

To validate our predictions of the Maxwell theory, we solve
the equivalent continuum Dirac theory. These results present a

unified topological field theory of Maxwell-bosons and Dirac-
fermions. It also highlights the one-to-one correspondence
between even parity bosonic phases C = %2 and traditional
fermionic phases C = %1. Interestingly, the equivalent 2D
Dirac theory is a supersymmetric partner of the 2D Maxwell
theory [41-44]. The continuum Dirac Hamiltonian is given
succinctly as

H(K) = v(kcox +kyo,) + A(k)o, (56)

where o; are the SU(2) Pauli matrices. The dispersion relation
of the positive energy state £ > 0 is found as

E*(k) = v2k% + A%(k), (57)

and A(k) = Ag — Ax(ka)? is a spatially dispersive Dirac
mass [49-51], v being the Fermi velocity. Again, we include
quadratic k dependence for proper regularization at k — oo.
This direct correspondence makes our earlier claim, the neces-
sity of nonlocality (momentum dependence), very clear.

The Hamiltonian possesses rotational symmetry, which
is generated by the spin-1/2 operator SZ = %O’Z. This is ev-
idently a fermionic representation R(27) = exp[i2n§.] =
—1,. Furthermore, we can prove transverse spin-1/2 quanti-
zation at HSPs, m(0) = %sgn[AO] and m(oc0) = —%sgn[Ag].
This should be contrasted with our results for integer spin
quantization of the 2D bosonic phase in Fig. 1. We obtain a
Chern invariant of

C = m(0) — m(c0) = 5(sgn[Ag] + sgn[Az]).  (58)

The phase is only nontrivial C = £1 when AgA, > 0, neces-
sitating a zero in the effective mass A (k) = O—precisely at
ka = /Ao/A,. This is the simplest realization of a fermionic
Chern insulator [54]. Notice that in two dimensions, the Hall
conductivity oy for the photon plays an analogous role as the
Dirac mass A for the electron.

The electronic edge state has a similar interpretation as the
photon, but for spin-1/2 particles. Imposing open boundary
conditions, a unidirectional edge state is revealed, Y1 (x, y) =
Y (x)eh,

Ya() = I/fo[ jL.](e””f — e, (59)

corresponding to a C = +1 phase. The decay lengths have an
identical form,

Mo [ve o2 + 40002 n0k,02 - A0l (60)

. 1
© 2a2|As|

and the edge state is massless E. = Fvk,, propagating in
opposite directions depending on the phase. Furthermore,
the edge state is spin-1/2 helically quantized, %R-O‘I/fi =
%oy Yy = ﬂ:%l//i, equating to a spin-up or spin-down electron
for C =1 or C = —1 respectively. The striking similarity of
Maxwell bosons and Dirac fermions is shown in Fig. 7. A
diagram of the electronic topological edge state is displayed
in Fig. 7(b) and a plot of the probability density is given in
Fig. 7(d).
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VI. EXPERIMENTAL SEARCH AND CONCLUSIONS

The standard approach of characterizing TRS broken
fermionic phases is dc transport measurements (charge and
spin Hall conductivity) or Faraday rotation angles at THz
frequencies. It should be noted that the former measurement
gives information at zero frequency and zero momentum
oy (0, 0) whereas the latter experiment characterizes matter
at finite frequency but close to zero momentum oy (@, 0). Our
predictions of photon spin quantization and bosonic phases are
fundamentally tied to oy (w, k). This is a formidable challenge
and therefore, for completeness, we suggest two experimental
approaches.

A. Momentum-resolved electron energy-loss spectroscopy
of gyrotropic plasmas

The high-frequency @ > 0 and subwavelength k > 0 prop-
erties of matter can be probed by momentum-resolved electron
energy-loss spectroscopy (k EELS) [74]. Here, highly ener-
getic electrons pass through matter and their energy loss, as
well as their momentum loss, is measured to understand the
bulk light-matter excitations. Fundamentally different from
conventional STEM-EELS [75], this approach can also give
insight into high momentum waves through scattering angle
measurement of electrons passing through matter. We antic-
ipate nonlocal gyrotropic plasmas to be ideal candidates for
topological bosonic phases of matter and probing with k EELS.

B. Cold atom near-field probes of nonlocal optical conductivity

Dynamical (high-frequency) conductivity is regularly stud-
ied by conventional tools such as ellipsometry and Faraday
rotation using incident optical beams. However, the momentum
carried by light waves is negligible compared to the Fermi
momentum of electrons. Therefore, the large momentum k > 0
behavior of the conductivity requires fundamentally different
probes. One approach is to use spontaneous emission from
cold atoms in the near field to investigate deep subwavelength
response parameters of our predicted bosonic phases of matter.
This is feasible since the GHz splitting in Rydberg atoms [76]
and low-frequency gyrotropic response in systems such as
quantum wells are comparable [32]. Recent work has shown
trapping of cold atoms near photonic nanostructures [77]—a
promising route for probing topological properties of matter.

C. Conclusions

In summary, we have developed the complete continuum
field theory describing all 2+ 1D topological bosonic phases of
the photon; incorporating both temporal and spatial dispersion
as a necessary generalization. The topological phases are
intimately connected to photon spin-1 quantization, with non-
locality being imperative to properly characterize the high-k
global behavior. Two unique bosonic phases are predicted:
an even parity phase C = £2 which is understood in inter-
acting bosonic systems, and an odd parity phase C = *1
which has no immediate interpretation but presents possibly
unexplored physics. We have studied the even parity phase
C = %2 utilizing a nonlocal Hall conductivity and reveal a
single topologically protected unidirectional photon at the

edge. This photon is helically quantized (spin-1), immune
to backscattering, defects, and exists at the boundary of the
C = %2 bosonic phase and any interface—even vacuum. To
validate our theory, we have compared all the low-energy
Maxwell phenomena to its supersymmetric Dirac counterpart,
confirming that even parity bosonic phases C = +2 are the
exact analog of traditional fermionic phases C = *1.
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APPENDIX A: 241D ELECTROMAGNETIC LAGRANGIAN

To understand the two-dimensional behavior of photons
[41], we start with the electromagnetic Lagrangian coupled
to a conserved current 9, J# = 0,

L=—L1FPF, —AJr, FM =3 A" =3 A", (Al

which is exact in any space-time dimension. The conservation
of charge ensures the action S = [ d9xdtL is gauge invariant,
where d is the spatial dimension. For d = 2, the motion of
charge is restricted to the x-y plane,

p+9;J =0.

JH = (pa Jxa Jy), (A2)

Similarly, planar currents restrict the spatial degrees of freedom
of the gauge potential A",

A" = (¢, Ay Ay). (A3)

This implies there are only two components of the electric field
and one for the magnetic field,

Ei=—8¢—A;, B, =€'8A;=08,A,—d,A,, (A4

such that exclusively transverse-magnetic (TM) waves propa-
gate within a 2D material. This makes physical sense since the
circulation of currents can only generate magnetic fields in a
single z direction. Note that €;; = —¢; is the 2D antisymmetric
matrix and should not be confused with the permittivity.

Varying the action with respect to A*, we arrive at the
familiar equations of motion,

F* =1J", F'=1e""F,, 08, F"=0.  (AS5)
Notice the dual equation F, u 1s slightly different in two dimen-
sions, which arises from the fact there are only three unique
components of the electromagnetic field. We can express the

equations of motion directly in terms of E; and B_,
&E =p, €3 B, —E =Ji, B,+€V3,E;=0. (A6)

These are precisely Maxwell’s equations in two dimensions.

We are most interested in the response of a bulk 2D material
so it is convenient to represent the induced charges in terms of
the polarization P; and magnetization M, densities,

p=—8P, J=P+e;d M. (A7)
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Substituting into the equations of motion, we define the electric
D; and magnetic B, displacement fields as

D — €3 H, =0, B, +e/§,E; =0, (AB)
which is simply the linear superposition of
D;=E; + P, B.=H. +M.. (A9)

The wave equation in Eq. (2) follows immediately after
substituting for the linear-response function M and defining
the column vector f = [E, E, H,]T for the TM state.

APPENDIX B: ELECTROMAGNETIC HAMILTONIAN
AND POLARITON EIGENSTATES

Here, we show that the response function M is derived from
a first-order in time Hamiltonian. Utilizing the decomposition
in Eq. (6), we expand in terms of three-component oscillator
variables ¥, by defining
Cox f
Yy = ———,

w — Wgk

wwa = wakth +Cozkfv (B1)
which is first order in time. Similarly, we back-substitute
Eq. (6) into Eq. (2) to obtain

of = [Ho(k) +y waklc;kcak} [+ Cha. (B2

The first term represents the vacuum equations and self-energy
of the electromagnetic field, while the second is the linear
coupling to the oscillators. By combining Eq. (B1) and (B2)
into a single algebraic matrix, the complete electromagnetic
Hamiltonian emerges,

Ho(k) + Yy 0 ChiCax Clhe Chy
Cik Wik 0

H(k) = Cox 0 Wk

(B3)

The Hermitian equation Hu = wu characterizes the dynamics
of the entire electromagnetic problem in a 2D material. u
constitutes the cumulative state vector of the photon + all
oscillator degrees of freedom,

u=I[f v1 Yo .0

Notice that contraction of u naturally reproduces the energy
density upon summation over all degrees of freedom,

_ ¢l e
to_ ot t akbak _
uu=f"f+f E (w—a)ak)zf_fMﬁ

o

(B4)

(BS)

with M = 3, (wM) > 0 always positive definite.
Eigenstates of the Hamiltonian are collective excitations of
oscillators coupled to the electromagnetic field,

(B6)

and are manifestly bosonic quasiparticles. These are the n
nontrivial roots of the characteristic equation,

det[Ho(k) — oM(w, k)] =0, o = w,(k),

Hyuux = ok,

(B7)

which generates the eigenenergies at any particular mo-
menta. Normalization of each mode is given concisely as

1= fy:rk/\;l(wnk’ k)fnk'

APPENDIX C: CONTINUUM REGULARIZATION

To adequately describe a continuum topological field the-
ory, the Hamiltonian must approach a directionally indepen-
dent value in the asymptotic limit limg_, », H(k) — H(k),
such that the system is connected at infinity [52]. This is
the continuum equivalent of a periodic boundary condition
since all limits at k — oo are mapped into a single point (i.e.,
one-point compactification). We can prove the Chern number
is quantized by analyzing the Berry phase over all momentum.
Continuum regularization necessitates the following condi-
tion:

%An-dk=—27[2pi+// F, d’k =2np, (Cl)
00 f R2

with p and p; € Z an integer. Here, A, (k) = —iuikaku,,k is
the Berry connection of any particular eigenstate and F,, (k) =
Z - [0k x A, (k)] is the Berry curvature. The path integral is
performed over a closed loop at infinity k = co, which is
equivalent to the Berry flux over all momentum space R? minus
any singular points in the connection. p; label these singular
points of the Berry connection A, (k;) which contribute an
integer unit of Berry flux at a particular momentum k;.
The Chern number C,, € Z is the summation over all such
singularities,

1 2
Cn=p+2i:p,~=E//Rand K.

For Eq. (C2) to hold, we see that the eigenstates must approach
a directionally independent value in the asymptotic limit, up
to a possible U(1) gauge,

(C2)

Am (k) =, (k) expli xu (k)] (C3)

When this is the case, the closed loop at infinity k = 0o is
determined purely by the gauge,

75 A, -dk = f dotn - dk = 27 = 27p.  (CH)
o0 o0

which is guaranteed to be an integer multiple of 2. Hence,
Chern numbers are quantized.

For completeness, we note that the Berry connection can be
simplified slightly to

An(K) = =i\ M(@ne, K for + £ A@n, K) ok, (C5)

where A is the Berry connection arising from the oscillators,

Cik OCak

@-oar

A, k) = —i Z
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