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Dirac wire: Fermionic waveguides with longitudinal spin
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The interplay of photon spin and orbital angular momentum (OAM) in the optical fiber (one-dimensional
waveguide) has recently risen to the forefront of quantum nanophotonics. Here, we introduce the fermionic dual
of the optical fiber, the Dirac wire, which exhibits unique electronic spin and OAM properties arising from
confined solutions of the Dirac equation. The Dirac wires analyzed here represent cylindrical generalizations
of the Jackiw-Rebbi domain wall and the minimal topological insulator, which are of significant interest in
spintronics. We show the unique longitudinal spin arising from electrons confined to propagation in a wire, an
effect which is fundamentally prohibited in planar geometries. Our work sheds light on the universal spatial
dynamics of electron spin in confined geometries and the duality between electronic and photonic spin.
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I. INTRODUCTION

Confined solutions of Maxwell’s equations exhibit unique
phenomena such as transverse photon spin and universal
spin-momentum locking [1–6]. These effects do not occur
in conventional circularly polarized propagating plane waves
where the spin is always directed longitudinally along the
momentum vector [7]. One striking example is an optical
fiber where Zeeman transitions in a cold atom shows spin-
dependent directional photon transport [1,2]. The goal of this
paper is to introduce the concept of Dirac waveguides and
understand the intriguing spin characteristics of confined elec-
tronic waves. Our work is motivated by the Dirac-Maxwell
correspondence [7–9] which studies the relativistic parallels
between photons and electrons.

Here, we introduce the Dirac wire [see Fig. 1(a)], the
fermionic dual of the optical fiber. This system is the cylin-
drical generalization of the m > 0, m < 0 domain wall intro-
duced by Jackiw and Rebbi [10], the canonical planar system
which spurred the field of topological materials. Important
recent work has shown a null expectation value for the rel-
ativistic electron spin in the planar Jackiw-Rebbi problem
[11]. In stark contrast, the confined geometry of a cylinder
supports longitudinal fermionic spin along its axis [12,13].
For completeness, we also mention that the two-dimensional
(2D) photonic dual of the Jackiw-Rebbi domain wall was
discovered only recently [14], and is described by the interface
of positive/negative gyrotropic media. Comparing Maxwell’s
equations to the 2D Dirac equation, the gyrotropic nonre-
ciprocity coefficient was shown to play the role of photonic
mass [15–17].

The radius of the proposed Dirac wire is on the order of the
Compton wavelength of the electron; fundamentally different
from the well-known quantum wire limit [18,19]. We directly
capture the relativistic effects of spin-orbit coupling and spin
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quantization in the spatial dynamics of the electron wave
function. This allows us to explicitly show the half-integer
quantization of the total angular momentum in an inhomo-
geneous waveguide system. This presents a unique approach
to analyzing spin-orbit coupling in confined geometries,
compared to traditional bulk energy-band structure [20,21].
Solutions of the Dirac equation in a cylindrical geometry
have been studied in the context of quantum chromodynamics
[22], Weyl fermions [12], and electrons in a step potential
[13]. Existence of the longitudinal spin component as well
as the spin-orbit coupling due to the confinement have been
predicted in Refs. [12,13]. However the spatial dynamics of
spin, as well as the connection to the Jackiw-Rebbi problem
in a purely relativistic electronic problem, have remained un-
explored. Here, we analyze cylindrical generalizations of both
the Jackiw-Rebbi domain wall and the minimal topological
insulator [23,24], which will be of interest in spintronics,
Majorana physics [25–27], and electron quantum optics [28].
Our work also motivates the concept of waveguide spin
electrodynamics where the relativistic interaction of confined
electrons and photons are manifested through the spin and
orbital angular momentum (OAM) properties [29,30].

II. DIRAC WIRE

We describe the Dirac wire as a cylinder with an effective
electronic mass m1, surrounded by a medium with an effective
electronic mass m2 [Fig. 1(a)]. The wire radius a ≈ λc is
on the order of the Compton wavelength of the electron
λc = h/(m1vF), where h, m1, and vF are the Planck constant,
electron mass, and Fermi velocity within the wire, respec-
tively. We introduce three distinct classes of Jackiw-Rebbi
(JR) domains labeled as JR+, JR−, and JR-D [Fig. 1(b)].
We also show important fundamental differences between
cylindrical JR solutions (Dirac wires) and the conventional
planar interface problem [10] widely studied in the field of
topological insulators and Majorana physics [27]. The main
differences between the cylindrical and planar JR problems
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FIG. 1. (a) Schematic of the Dirac wire. (b) The three Jackiw-Rebbi (JR) type domains considered here are JR+ with electron mass inside
(m1) and outside (m2) the wire both positive, JR− with positive mass inside and negative mass outside, and JR-D with a dispersive electronic
mass inside [Eq. (5)] and an arbitrary mass outside. JR-D corresponds to the minimal topological insulator. Distribution of the probability
density, ψ†ψ , for the three problems are shown in the three panels of (b). The fields are normalized such that

∫
ψ†ψ = 1 when integrated over

the entire cross section. Notice that the probability amplitude of the JR− state is localized around the perimeter of the wire ρ = a. Also, in the
case of the JR-D problem, the wave function is identically zero at the boundary and outside the wire ψ (ρ � a) = 0.

are the emergence of a longitudinal component of spin and
the existence of confined solutions for all-positive electronic
mass.

For a cylindrical Dirac waveguide, the difference in elec-
tronic mass inside and outside the wire gives rise to bound
fermionic waves. These solutions can be derived from the
time-independent Dirac equation,

Hψμ = (
vF ααα · ppp + mv2

Fβ
)
ψμ = Eψμ. (1)

Eigenstates of the Dirac equation can be identified by five
good quantum numbers which correspond to five commut-
ing operators. In cylindrical coordinates, these operators are
the Hamiltonian H , longitudinal total angular momentum Jz,
longitudinal momentum pz, transverse momentum p2

⊥, and
the transverse helicity h⊥ [22,31]. The quantum numbers
corresponding to these operators respectively are E , h̄μ, h̄kz,
h̄k⊥, and s = ±1, where μ ∈ Z + 1

2 is a half integer due to the
fermionic nature of electrons. The two solutions correspond-
ing to the two eigenvalues of transverse helicity s = ±1 are
(see the Supplemental Material [32] and, also, Refs. [31,33]
therein),

u(±)
μ,M (k) = Cμeikzzeiμφ

√
2

⎛
⎜⎜⎜⎝

Zn+ (k⊥ρ)e−iφ/2

±Zn− (k⊥ρ)e+iφ/2

∓ih̄vF
k⊥+ikz

M Zn+(k⊥ρ)e−iφ/2

ih̄vF
k⊥+ikz

M Zn−(k⊥ρ)e+iφ/2

⎞
⎟⎟⎟⎠, (2)

where Cμ is the normalization factor, M = E + mv2
F, k⊥ =√

k2 − k2
z , and n+ − 1

2 = n− + 1
2 = μ. Here, h̄2k2 are the

eigenvalues of total momentum operator ppp2, and n± ∈ Z are
integers. The s = ±1 signs appearing in Eq. (2) refer to the
eigenvalues of the transverse helicity operator, h⊥. Zn(k⊥ρ) is
a Bessel function of order n and argument k⊥ρ, where ρ is the
radial coordinate.

The vector spin operator of the Dirac equation is defined as

�̂�� = h̄

2

(
σσσ 0
0 σσσ

)
, (3)

where σσσ = (σx, σy, σz ) are the Pauli matrices expressed in
vector operator form. The longitudinal component of the
orbital angular momentum (OAM) operator is

L̂z = −ih̄
∂

∂φ
. (4)

Together with the spin operator, we obtain the longitudinal
total angular momentum Ĵz = �̂z + L̂z. In the subsequent sec-
tions we will use these operators to find the expectation values
of the spin and orbital angular momentum of the modes.

A. Cylindrical Jackiw-Rebbi domain wall

We now solve the cylindrical wire geometry with an ef-
fective electronic mass m1 surrounded by a medium with an
effective electronic mass m2. This is the cylindrical analog of
the 1D Jackiw-Rebbi (JR) domain wall [10,23,24]. Unlike the
1D problem, however, solutions of the cylindrical geometry
are not limited to the condition m1m2 < 0. Therefore, we
analyze two separate cases; the case when m1, m2 > 0 and
label it as JR+, and the case when m1 < 0, m2 > 0 and label
it as JR−.

For the case of m1, m2 > 0 (JR+), solutions of Eq. (1)
only exist when m2 > m1 which requires a larger mass (band
gap) outside the wire to confine the waves. This condition is
analogous to total internal reflection in an optical fiber, which
necessitates a lower refractive index outside the fiber [34]. For
the JR+ problem, the solutions are characterized by k⊥1 real

and k⊥2 imaginary where k⊥i =
√

k2
i − k2

z are the transverse
(to the z axis) propagation constants. k1 and k2 being the
characteristic wavelengths inside and outside of the wire,
respectively. Being comprised of evanescent waves outside the
wire and standing waves inside, we denote these solutions as
hybrid modes Hμ,ν . The subscripts μ and ν correspond to the
total angular momentum eigenvalue and the order of the radial
zero of the Bessel function.

Figure 1(b) (left panel) shows the amplitude of the wave
function, ψ†ψ , for the dominant H1/2,1 mode. Note that for
the JR+ problem, the solutions vanish at ρ → ∞ as the wave
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FIG. 2. Spin and orbital angular momentum densities for the
three Jackiw-Rebbi (JR) domains (Fig. 1). As an example, a = 20 Å,
μ = 1

2 , and kz = 0. |m1|v2
F and m2v

2
F are 1 and 2 eV, respectively.

For the JR-D problem, m0v
2
F = 1 eV and Bh̄2 = 50 eV Å

2
[35]. In

all three scenarios we have assumed a Fermi velocity of vF 	 1.52 ×
105 m/s, such that the Compton wavelength is λc 	 8 Å. The values
at the bottom of each figure are the integrated quantities of the
respective distribution over the entire cross section of the problem.
Note that the spin and OAM are not individually conserved but their
summation (Jz = Sz + Lz) is. Although not individually conserved,
the difference in the distribution of spin and OAM makes them
locally distinguishable. This means that one can, in principle, couple
exclusively to spin or OAM locally.

function is evanescent outside the wire. Figure 2 (first row)
displays the spatial distribution of longitudinal spin and or-
bital angular momentum densities for this mode. Note that the
azimuthal φ̂ and radial ρ̂ components of the spin and OAM are
identically zero—the angular momentum is purely longitudi-
nal (directed along ẑ). The integrated values of spin and OAM
over the entire x-y plane is recorded at the bottom of each
figure. For the H1/2,1 mode these values are not quantized,
Sz 	 0.49h̄ and Lz 	 0.01h̄, respectively. Their sum, however,
gives the half-integral value of Jz = Sz + Lz = h̄

2 = μh̄ of
the total angular momentum. These results show that while
the spin and OAM are not separately conserved quantities,
their sum, the total angular momentum, is conserved with an
eigenvalue h̄μ. In other words, the wave functions ψμ are also
eigenfunctions of the Ĵz operator [36].

Solutions for the Jackiw-Rebbi Dirac wire with m1 < 0
and m2 > 0 (JR−) are similar to that of the JR+ problem
with the difference that, in addition to the hybrid Hμ,ν modes,

another set of solutions exists. These are characterized by
decaying solutions outside and inside the wire (k⊥1 and k⊥2

both imaginary). We label these waves as decaying Dμ modes.
In contrast to the hybrid modes, the decaying modes have
only one possible solution for a given μ and are therefore
labeled by only one quantum number [32]. As shown in
Fig. 1(b) (middle panel), the wave function of this mode is
predominantly concentrated around the perimeter of the wire
and is therefore the cylindrical analog of the surface states in
the planar Jackiw-Rebbi domain [10]. In fact, as shown later,
the gapless edge states of the planar geometry emerge when
a → ∞. The second row in Fig. 2 shows the spatial distri-
bution of longitudinal spin and orbital angular momentum
densities of the dominant mode, D1/2, for the JR− problem.
Here also, the spin and OAM are purely longitudinal due
to the confinement. This is in stark contrast with the plane-
wave solutions of the Dirac equation where the propagation
direction of the electron does not put any constraint on the
direction of spin. In the Dirac wire, however, the direction
of spin of the electron is fixed by the axis of the wire. The
integrated values of spin and OAM give Sz 	 0 and Lz 	 0.5h̄,
respectively, which again produces Jz = Sz + Lz = h̄

2 .

B. Dispersive Jackiw-Rebbi (topological insulator)

We now solve the Dirac Hamiltonian in Eq. (1) when the
electronic mass inside the wire is dispersive [23,37],

m1v
2
F = m0v

2
F − Bh̄2k2, (5)

where m0 is the electron rest mass in the wire and B is
the dispersion factor. Denoted by JR-D, the dispersive mass
gives rise to solutions satisfying open boundary conditions
(ψμ = 0) on the surface of the wire, irrespective of the mass
outside. This is confirmed by the plot of the probability
density [right panel in Fig. 1(b)], where the wave function
is identically zero for ρ � a. The dispersive mass considered
here is the simplest model that produces the gapless edge
states on the surface of a topological insulator [37,38]. The
dispersive mass in Eq. (5) gives rise to nontrivial topological
properties in the bulk [23] which, according to the bulk-edge
correspondence [39], results in the appearance of gapless
edge states. Existence of these edge states, irrespective of the
surrounding material, implies the open boundary condition
where the edge states vanish at the boundary of the topological
insulator [40]. It can be shown that the bulk Z2 invariant is
nontrivial (−1)ζ = sgn(−m0B) whenever m0B > 0. Hence,
the medium ρ < a is a topological insulator ζ = 1. Note that
we do not consider the inverse problem in this paper, where
the medium ρ > a is topological and the wire is treated as a
cylindrical defect.

In the JR-D case, the eigenfunctions are of similar form as
Eq. (2) with the difference that instead of two, there are four
eigenfunctions:

u(+)
μ,M (1) (k

(1) ), u(−)
μ,M (1) (k

(1) ),

u(+)
μ,M (2) (k

(2) ), u(−)
μ,M (2) (k

(2) ),
(6)

where M (i) = E + m0v
2
F − Bh̄2(k(i) )2 and u(±)

μ,M (i) (k(i) )’s are

given by Eq. (2). Here k(i)
⊥ = √

(k(i) )2 − k2
z with k(i) being two
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possible propagation constants within the wire, resulting from
the dispersive mass [32],

k(1,2) = vF√
2Bh̄

[
(2m0B − 1) ±

√
(1 − 4m0B) + 4B2E2

v4
F

]1/2

.

(7)

Unlike 1D solutions of the topological insulator [23,24], so-
lutions of the cylindrical JR-D problem exist irrespective of
the sign of m0B. In this paper, however, we only consider the
scenario when m0B > 0 since the solutions of the trivial case
ζ = 0 are similar to the JR+ domain and are not particularly
interesting.

Like the JR± states, we can label the modes depending on
whether the two transverse propagation constants, k(1)

⊥ and k(2)
⊥

are real or imaginary. Note that k(1)
⊥ and k(2)

⊥ both belong to the
interior of the wire ρ < a as there are now two characteristic
wavelengths [Eq. (7)]. In addition to Hμ,ν and Dμ, two other
types of modes labeled as Rμ,ν and Cμ,ν exist in the JR-
D problem. These modes refer to real (Rμ,ν) and complex
(Cμ,ν) solutions for k(1,2)

⊥ , respectively. The third row of Fig. 2
shows the spin and orbital angular momenta densities for
the dominant mode, R1/2,1, of the JR-D problem. Here also,

the azimuthal and radial components of the spin and OAM
are identically zero—only the longitudinal part is nonvanish-
ing. Due to spin-orbit coupling, the spin and orbital angular
momentum are not individually conserved. This means it is
difficult to distinguish between the separate contributions of
the total angular momentum in an experiment. The spatial
distributions of spin and OAM in Fig. 2, however, suggest
a way to observe the spin or orbital parts locally. Analyzing
the spin and orbital parts of R1/2,1 for the JR-D problem,
for instance, we observe that while the spin is dominantly at
the center of the wire, the orbital angular momentum is zero
here and is distributed closer to the perimeter. This shows
that using a point contact at the center of the wire, one can
exclusively couple to the local spin of the R1/2,1 mode where
the orbital angular momentum vanishes. This method is in
analogy to the approach used in Refs. [1,2] where a trapped
atom is used to probe the local spin of the photonic field in an
optical fiber.

III. DISPERSION OF DIRAC WAVEGUIDES

The dispersion relation E = E (kz ) of the dominant modes
is presented in Fig. 3(a) and shows significantly larger group
velocities for JR− and JR-D compared to JR+, which implies

FIG. 3. (a) Dispersion and group velocities (inset) for the dominant modes of JR+ (dashed blue), JR− (dotted red), and JR-D (solid black).
Group velocities are normalized to the Fermi velocity vF 	 1.52 × 105 m/s. Wire radius dependence of (b) band gaps, (c) spin, and (d) OAM
for the three problems at kz = 0. Here μ = 1

2 , kz = 0, |m1|v2
F = 1 eV, m2v

2
F = 2 eV, and λc 	 8 Å. The insets show the zoomed in region of

the corresponding figure for wire radius between 1 and 5 nm. For the topological insulator (JR-D), m0v
2
F = 1 eV and Bh̄2 = 50 eV Å

2
. Due to

confinement in the cylindrical geometry, the band gap is opened for all three problems. For JR-D, however, the band gap closes and reopens
for certain values of a as seen in the inset of panel (b). Note that the summation Jz = Sz + Lz produces the conserved value of 1

2 in all three
cases. In the limit a → ∞, OAM vanishes Lz → 0 for JR+, while spin vanishes Sz → 0 for JR− and JR-D.
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higher conductivity. Anomalous dispersion for JR-D can be
explained by the fact that, due to the dispersive electronic
mass, charge transport is dominated by holes rather than
electrons. This means that, in the regions where the group
velocity becomes negative [inset of Fig. 3(a)], charge currents
propagate along the negative ẑ direction for kz > 0 [32].

As shown in Fig. 3(b), the band gap in the JR+ problem
plateaus to m1 (1 eV) for large radii. Since the Hμ,ν modes of
the JR+ domain wall are mostly distributed within the bulk of
the wire [Fig. 1(b)], these modes transform into bulk modes
when a → ∞. Note, however, that the spin dynamics in a
fully bulk problem would be different from the spin in the
JR+ problem due to the different rotational symmetries of
the systems. The rotational symmetry around the z axis in the
Dirac wire problem would be replaced by the full rotational
symmetry in the bulk problem in the limit a → ∞. This
means that a deterministic electronic spin along any particular
direction would disappear.

For JR−, on the other hand, the band gap closes when
a → ∞. This can be explained by the fact that the mode is
predominantly distributed around the perimeter of the wire
[middle panel of Fig. 1(b)]. Therefore, the D1/2 mode trans-
forms into the edge states of the conventional 1D Jackiw-
Rebbi problem [10] when a → ∞. The opening of the band
gap in the JR− problem, for small wire radius, can be ex-
plained by the hybridization of the edge state modes [41].

More interesting is the band gap of the topological insula-
tor (JR-D) where for some finite values of radii, the band gap
closes and reopens in an oscillatory fashion with a [inset of
Fig. 3(b)]. For JR-D, spin also exhibits oscillatory behavior
and passes through regions of positive and negative Sz upon
increasing the wire radius [Fig. 3(c)]. However, as a → ∞,
angular momentum is dominated by spin for the JR+ problem
and conversely dominated by OAM for JR− and JR-D. This
means the dominant JR− and JR-D modes behave like edge
states in the limit a → ∞ and circulate around the perimeter
of the material. Another important observation in Fig. 3(c)
is that, although the spin is not conserved in any problem,
its absolute value never exceeds 1

2 . This holds for all higher
orders of μ and ν as well [32]. Note also, for all three cases,
the total angular momentum is still conserved irrespective of
the value of the wire radius.

IV. CONCLUSION

Our results show important differences between the 1D
JR [10,23] and the cylindrical JR domain walls. In contrast
to the 1D problem, the confined geometry of JR± and JR-D
display nonzero longitudinal spin and orbital angular mo-
mentum. Moreover, we have shown that a sign change in
mass is not necessary for the existence of confined cylindrical
solutions of the Dirac equation. Labeled by JR+, these Dirac
waveguide solutions are the electronic analog of the guided
modes of an optical fiber [34]. This observation makes wire
geometry an excellent candidate as a Dirac waveguide, where
electronic wave packets can propagate inside the wire with
high confinement.

While the experimental observation of these effects is
challenging for a wire of this radius, we believe our results
will push current techniques further due to their importance
in spintronics and electron transport. Topological insulator
nanowires of radius a = 20 nm have been reported in the liter-
ature [42]. Although the JR-D problem has the simplest model
for topological insulators, the parameters used here are within
the range of real materials. For Bi2Se3, for instance, a Fermi
velocity of vF 	 5.0 × 105m/s, a band gap of about 0.28 eV,

and dispersion factor of 56.6 eVÅ
2

has been reported [35].
The parameters for other topological insulators such as Bi2Te3

and Sb2Te3 show that the Dirac wire is realizable using
available materials [38]. The surrounding environment can be
either vacuum or another material with a band gap larger than
that of the wire. While the difference between the band gap in
vacuum and these materials can be very large, the solutions
still exist only with a higher confinement inside the wire.
Smaller effective mass ratios between the cladding and core of
the wire can be achieved by placing, for instance, the Bi2Se3

wires of a 0.28-eV band gap inside or on top of a bulk Bi2Te3

material of 0.3-eV band gap. The study of such possibilities is
the subject of more comprehensive future research.
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