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Viscous Maxwell-Chern-Simons theory for topological electromagnetic phases of matter
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Chern-Simons theories have been very successful in explaining integer and fractional quantum Hall phases of
matter, topological insulators, and Weyl semimetals. However, it remains an open question as to whether Chern-
Simons theories can be adapted to topological photonics. We develop a viscous Maxwell-Chern-Simons theory
to capture the fundamental physics of a topological electromagnetic phase of matter. We show the existence of
a unique spin-1 skyrmion in the viscous Hall fluid arising from a photonic Zeeman interaction in momentum
space. Our work bridges the gap between electromagnetic and condensed matter topological physics while also
demonstrating the central role of photon spin-1 quantization in identifying new phases of matter.
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I. INTRODUCTION

Chern-Simons theory has been studied in condensed mat-
ter and high-energy physics for over three decades [1,2].
In a two-dimensional (2D) quantum Hall fluid, it describes
the transverse current generated by an applied electric field,
which manifests in the Hall conductivity σxy. Interestingly, 2D
Chern-Simons theory also provides an elegant explanation of
Hall quantization as well as the chiral edge currents, with no
need to invoke electronic band structure. In addition, it has
successfully described the fractional quantum Hall effect in
many-body systems and even captures the physics of anyons
[3]. On the other hand, three-dimensional (3D) Chern-Simons
theory, also known as axion electrodynamics, emerges as a
residual magnetoelectric response in topological insulators
[4]. Lattice gauge theories are also of significant interest in
quantum simulation [5].

However, in both 2D and 3D, Chern-Simons theory only
elucidates the topological properties of the electron. The
topology of the electromagnetic field in these quantum materi-
als has remained largely unexplored. Here we mean quantities
such as the photonic Chern number and the topological in-
variants associated with the electromagnetic field coupled to
condensed matter. To characterize these topological proper-
ties, it is fundamentally necessary to define the photon wave
function and understand the dynamical ω �= 0 and subwave-
length k �= 0 behavior of the material response [6,7]. In solids,
the topology of the photon wave function is encapsulated
in the spatiotemporal dispersion of optical coefficients such as
the conductivity tensor σi j (ω, k). This insight has led to a new
electromagnetic classification of topological matter [8] and
intriguing phenomena such as unidirectional electromagnetic
spin waves [9] that are fundamentally different than magneto-
plasmons. These so-called topological electromagnetic phases
of matter are intrinsically bosonic (spin-1) and are fundamen-
tally different from fermionic (spin-1/2) phases as they obey
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differing symmetries, e.g., time-reversal: T 2 = +1 for bosons
vs T 2 = −1 for fermions. The prototypical model of a gapped
topological electromagnetic phase, with nontrivial photonic
Chern number Cem �= 0, was first connected to nonlocality
(momentum dependence) of the Hall conductivity σxy(k) =
λ(κ − ξk2) [6,7]. These observations necessarily require a
formalism beyond conventional Chern-Simons theory.

In this paper we lay the foundations for a field theory
approach to topological photonic phases. The specific class of
systems we focus on are quantum fluids with Hall viscosity.
Hall viscosity ηH [10,11], also known as odd viscosity [12] in
fluid dynamics, is a fundamental property of quantum Hall flu-
ids and can exhibit topological quantization analogous to the
Hall conductivity [13–15]. Like conventional viscosity, it is
related to the stress response of the system under deformations
and governs the diffusive flow of the electron fluid. However,
Hall viscosity is unique because it is dissipationless, inducing
diffusive flow in a direction perpendicular to a pressure (force)
gradient and therefore does no work. We show that Hall
viscosity, intriguingly, defines a topological electromagnetic
phase of matter with spin-1 photonic skyrmions. We further
describe the central idea of a viscous photon mass arising
in viscous Chern-Simons theories—fundamentally different
from the Proca mass which breaks gauge invariance [16].
Our viscous Maxwell-Chern-Simons (MCS) Lagrangian also
reveals topologically protected chiral (unidirectional) edge
states that minimize the surface variation and correspond
to massless excitations costing an infinitesimal amount of
energy.

An overview of the problem is depicted in Fig. 1. The
low-energy ω ≈ 0 and long-wavelength k ≈ 0 quantized Hall
conductivity is well understood as a topological phase of
electrons. At terahertz frequencies ω �= 0 but low momentum
k ≈ 0, plateaus and quantized Faraday rotation have been
observed in the integer quantum Hall regime [17]. However,
at finite ω �= 0 and k �= 0, the Hall conductivity becomes
dynamical and viscous, paving the route for the first-known
topological phase for photons in condensed matter. We argue
that our low-energy theory applies to graphene’s electron fluid
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FIG. 1. (a) Summary of the four quantum Hall regimes. Hall quantization and plateauing behavior has been demonstrated in both static and
dynamical regimes. However, topological electromagnetic phases Cem �= 0 are only realized in the dynamical + viscous (nonlocal) regimes.
(b) Overview of viscous Maxwell-Chern-Simons theory. The bulk topology is governed by a spin-1 photonic skyrmion in momentum space
which arises from viscous Hall conductivity σxy(k) = λ(κ − ξk2). The arrows represent the direction of the effective spin d̂ of the photon. The
boundary of the nontrivial phase κξ > 0 hosts topologically protected chiral photons which are linearly dispersing (massless).

[18], where appreciable Hall viscosity [19] was experimen-
tally demonstrated, even under weak magnetic fields. The
viscous MCS theory possesses a few limitations as it neglects
Coulomb interactions and the high-frequency screening of
the magnetic field, which require more sophisticated hydro-
dynamic models [20]. The main goal here is to formulate a
field-theoretic approach to topological photonic phases, make
the connection with Chern-Simons theories, and illustrate the
importance of Hall viscosity in realizing nontrivial phases. To
guide experimentalists in the search for such new topological
electromagnetic phases of matter, we have included a sum-
mary of a few physical systems exhibiting Hall viscosity along
with their characteristic parameters in Table I.

We note that our work is closely related to ideas in topolog-
ical photonics, but the physical platforms are fundamentally
different. We are concerned with condensed matter systems
such as viscous Hall fluids. Topological wave phenomena
[21–23] have transcended all of photonics: From plasmonics
[24,25], metamaterials [26–28], and photonic crystals [29,30].
Nevertheless, it remains an open question whether topological
photonic phases can be expressed in terms of an effective
gauge theory, i.e., a field-theoretic approach. The advantage of
our viscous MCS theory is the proof that the topological edge
wave minimizes the action on the boundary. Furthermore, the

boundary conditions we derive are fundamentally different
from those used for conventional nanoscale systems such as
photonic crystals and plasmonics. This difference arises from
the presence of Hall viscosity, which is a necessary physical
property for defining topological electromagnetic phases of
matter.

II. LAGRANGIAN FORMULATION FOR TOPOLOGICAL
ELECTROMAGNETIC PHASES

A. Maxwell-Chern-Simons theory

In 2+1 dimensions, the MCS Lagrangian is defined as

LA = −1

4
FμνFμν − κ

4
εμνρAμFνρ. (1)

Aμ = (φ, Ax, Ay) are the 2D gauge fields, and Fμν = ∂μAν −
∂νAμ is the field strength tensor [1,2]. We have set the di-
electric constant to unity ε = 1, but the case with ε > 1 is
easily handled and does not alter the topological physics—it
simply scales the electric field and the effective speed of light.
The first term in LA is the familiar Maxwell Lagrangian.
The second term is the Chern-Simons Lagrangian, and κ

is the coupling constant. Alternately, the MCS theory can
be formulated in the more aesthetically pleasing “self-dual”

TABLE I. Summary of two physical systems exhibiting significant Hall viscosity and topologically nontrivial electromagnetic phases
Cem �= 0. In general, Hall viscosity is always present if the system breaks both parity and time-reversal symmetry. When viscosity repels the
magnetic field C2 > 0, the electromagnetic phase is nontrivial [Eq. (9)], which occurs in both quantum Hall ν ∈ Z [14] and graphene Hall fluids
[18]. Hall viscosity is also appreciable in the semiclassical graphene fluid [19] around room temperature 100–300 K and for weak magnetic
fields B0 ≈ 10 mT.

Quantum Hall fluid [14] Graphene Hall fluid (ν = 1) [18]

Biasing magnetic field, B0 Quantizing 10 T
DC Hall conductivity, σxy(0) νe2/(2π h̄) 2e2/(2π h̄) ≈ 6.97 × 105 m/s
MCS mass, κ/2π σxy(0)/(2πλ) σxy(0)/(2πλ) ≈ 4.43 THz
Magnetic length, l

√
h̄c/(eB0 )

√
h̄c/(eB0) ≈ 81 Å

Cyclotron frequency, ωc/2π eB0/(2πcm) eB0/(2πcm∗) ≈ 22.6 THz
Hall viscosity, ηH/(h̄n) ν/4 ν/4 = 1/4
Energy density, ε(B0) ν2 h̄ωc/(4π l2)

√
2h̄vF ζ (3/2)/(8π 2l3) ≈ 403 μJ/m2

Topological phase? C2 = ξ/(κl2) yes: C2 = 3ν/4 > 0 yes: C2 ≈ 1/2 > 0
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picture [31],

LF = κ

2
F̃μF̃μ + 1

2
εμνρ F̃μ∂ν F̃ρ, (2)

which is equivalent to Eq. (1) up to a Legendre transformation
[32]. In this case, the field theory is described in terms of
the electromagnetic dual F̃μ = 1

2εμνρFνρ , which satisfies the
Bianchi identity (Faraday equation) ∂μF̃μ = 0 upon variation
of the action. In 2D, the dual field F̃μ is a covariant vector,

F̃μ = (Bz, Ey,−Ex ), (3)

with the same number of components as the gauge fields Aμ =
(φ, Ax, Ay) and therefore is an equally valid description of the
field theory.

B. Viscous Maxwell-Chern-Simons theory

Although traditional MCS theory has been studied ex-
tensively, we analyze the role of viscosity (nondissipative
nonlocality) [33] that leads to topological implications on
the electromagnetic field [6–9]. Originally, Hall viscosity was
conceived from a geometric perspective, associated with de-
formations of the underlying metric of the quantum fluid
[13]. An equivalent but alternative point of view is to include
nonlocal terms that account for the stress-strain response of
the quantum Hall fluid. To this end, we introduce the viscous
MCS Lagrangian,

LA = −1

4
FμνFμν − κ

4
εμνρAμFνρ − ξ

4
εμνρAμ∇2Fνρ, (4)

which will elucidate these topological electromagnetic phases
of matter. An effective action to describe a medium with Hall
viscosity was first proposed by Hoyos and Son [14], which
was motivated by Galilean invariance as opposed to rela-
tivistic invariance. Similarly, our viscous Lagrangian Eq. (4)
is Galilean invariant. The one significant difference is that
the Hoyos and Son Lagrangian was limited to longitudinal
fields E = −∇φ. Our theory is a slight generalization in flat
space-time that includes the response of the transverse field
∇ × E �= 0. A proof is provided in the Supplemental Material
[34]. ξ is the nonlocal Chern-Simons coupling and accounts
for viscosity in the MCS Lagrangian.

As before, we can transform to the self-dual picture to
obtain an intuitive interpretation:

LF = κ

2
F̃μF̃μ − ξ

2
∇F̃μ · ∇F̃μ + 1

2
εμνρ F̃μ∂ν F̃ρ. (5)

We note there is a striking one-to-one correspondence be-
tween Eq. (5), which we derived, and the minimal topological
Dirac model [35],

Lψ = mψ̄ψ − b∇ψ̄ · ∇ψ − iψ̄γ μ∂μψ, (6)

where γ μ are the 2+1D gamma matrices and ψ is a
two-component spinor. Equations (5) and (6) are, in fact,
supersymmetric partners [1], describing spin-1 bosons and
spin-1/2 fermions, respectively. By direct comparison, we see
that κ plays the role of photonic mass in the same way as m
for the electron. Likewise, ξ and b dictate the kinetic (viscous)
terms, which are essential to realize nontrivial phases. In the
long-wavelength (continuum) limit k ≈ 0, the viscous term
regularizes the field at k → ∞ such that the momentum space

is effectively a sphere R2 
 S2. This means topological invari-
ants of the electromagnetic field, like the Chern number Cem,
can be defined [36]. We also show in the lattice regularized
theory (Sec. IV) that nontrivial photonic phases Cem �= 0 are
only possible when viscosity is nonzero ξ �= 0.

C. Viscous Hall conductivity

Physically, the Chern-Simons coupling is interpreted as a
dissipationless Hall conductivity, as the induced current den-
sity is

Jμ
ind = −λ

∂LA

∂Aμ

= λ(κ + ξ∇2)F̃μ. (7)

Since the induced current Jμ
ind is proportional to the dual field

F̃μ, the nonlocal conductivity tensor σi j (k) is purely antisym-
metric,

σxy(k) = −σyx(k) = λ(κ − ξk2), (8)

with vanishing symmetric components σxx = σyy = 0. The
prefactor λ is a characteristic length scale of the problem
and ensures correct units of the conductivity. For simplicity,
we assume λ is the Thomas-Fermi screening length, which
is approximately λ ≈ 25 nm in graphene [37]. The viscous
Chern-Simons coupling ξ therefore describes the quadratic
correction to the Hall response [14],

σxy(k)

σxy(0)
= 1 − ξ

κ
k2 = 1 − C2(kl )2, (9)

where σxy(0) = λκ = νe2/(2π h̄) is the intrinsic DC Hall re-
sponse, ν is the filling factor, and l = √

h̄c/(eB0) is the
magnetic length. h̄ is the reduced Planck constant, c is the
speed of light, e is the elementary charge, and B0 is the biasing
magnetic field. The coefficient C2 = ξ/(κl2) depends on the
Hall viscosity ηH and the energy density ε(B0) of the Hall
fluid,

C2 = 2π

ν

l2

h̄ωc
B2

0ε
′′(B0) − ηH

h̄n
, (10)

where ωc = eB0/(cm) is the cyclotron frequency and n is the
density of electrons. The first term involving B2

0ε
′′(B0) is a

thermodynamic property related to the internal compressibil-
ity [38], while the second term involving ηH is universal.
Depending on the material platform, C2 can be either positive
C2 > 0 or negative C2 < 0, which either inhibits or enhances
the total Hall response. We argue that the inhibiting regime
C2 > 0, i.e., when κξ > 0, corresponds to a topologically
nontrivial electromagnetic phase [6–9].

D. Equations of motion

LA and LF generate the same equations of motion when
one varies the action with respect to the gauge fields (Aμ) or
the dual fields (F̃μ). However, to ensure the action does not
break gauge invariance on a boundary, it is more convenient
to work with the self-dual theory LF . Varying the dual field
F̃μ → F̃μ + δF̃μ, we naturally obtain a bulk and surface term
δS = δSb + δSs:

δSb =
∫

dV [∂μFμν + (κ + ξ∇2)F̃ ν]δF̃ν (11)

155425-3



TODD VAN MECHELEN AND ZUBIN JACOB PHYSICAL REVIEW B 102, 155425 (2020)

and

δSs =
∫

∂V
dtdy

[(
1

2
F xμ − ξ∂xF̃μ

)
δF̃μ

]
x=0

. (12)

dV = dtdxdy is the differential space-time volume, and we
have taken the boundary at x = 0. The minimization principle
states that a physical system tends to its lowest energy state,
which requires that the fields satisfy the equations of motion
within V and the boundary conditions on ∂V . Here we con-
sider an isolated system with no external fields or sources.
By requiring a vanishing bulk term δSb = 0, we arrive at the
viscous wave equation in the quantum fluid,

∂μFμν + (κ + ξ∇2)F̃ ν = 0, (13)

where Fμν = εμνρ F̃ρ is the field strength. Equation (13) rep-
resents the equations of motion of the viscous MCS theory.
On the other hand, the surface term δSs = 0 vanishes for two
distinct boundary conditions. The first is a Dirichlet condition,

δF̃μ|x=0 = 0, (14)

where the value of the field is fixed on x = 0, usually to
zero F̃μ|x=0 = 0, corresponding to an open boundary. The
second possibility is slightly more interesting and represents
the natural (mixed) boundary condition:

jμs = δSs

δF̃μ|x=0
= [F xμ − 2ξ∂xF̃μ]x=0 = 0. (15)

Equation (15) has a particularly nice explanation—it implies
the induced surface current jμs vanishes on the boundary. We
emphasize that this boundary condition is formally identical
to its fermionic counterpart derived from the Dirac equation
[Eq. (6)]. Together, the above equations define the bulk and
edge physics of photons propagating in the viscous Hall fluid.

III. VISCOUS PHOTON MASS

A. Photonic Zeeman interaction

Our first goal is to study the bulk photonic physics of
the viscous Hall fluid by exploiting the equations of motions
derived above [Eq. (13)]. For that, we introduce a Hamiltonian
formalism of the electromagnetic field coupled to a medium
described by its macroscopic response (complete conductivity
tensor). To construct the electromagnetic “Dirac equation” it
is convenient to utilize the Riemann-Silberstein (RS) vector
�F [39], which is often called the photon wave function. In
2+1D, the RS vector is defined as

�F = [Ex Ey iBz]. (16)

In this Maxwell Hamiltonian picture, �F is a 3D vector propa-
gating in the 2D plane while the dual field (F̃μ) is a covariant
vector, but the two are equivalent up to a unitary transfor-
mation. We now combine Eq. (13) with the Bianchi identity
(Faraday equation) to obtain a first-order (in time) wave
equation:

i∂t �F = i �d × �F = H �F . (17)

We call �d the effective magnetic field of the photon which is
a 3D vector operator,

�d = [px py κ − ξ p2], (18)

and p j = −i∇ j are the corresponding momentum operators.
H is the “Maxwell Hamiltonian” and is the projection of the
effective magnetic field �d onto the vector spin operators �S =
[Sx Sy Sz]:

H = �d · �S = pxSx + pySy + (κ − ξ p2)Sz. (19)

The Maxwell Hamiltonian H = �d · �S resembles the Zee-
man interaction but for photons [40]. The essential difference
is that �S are spin-1 operators for the photon, as opposed to the
Pauli matrices �σ which are spin-1/2 operators for the electron.
In the RS basis, [S j, Sk] = iε jklSl are antisymmetric SO(3)
matrices that generate the spin-1 algebra [41,42]. Note that the
photon propagating within the viscous Hall fluid experiences
a net magnetic field that depends on its momentum, Hall
conductivity, as well as the Hall viscosity. The dielectric con-
stant ε simply scales the momentum operators and does not
effect the behavior of the net magnetic field �d . This “photonic
Zeeman interaction” in a viscous quantum Hall fluid leads to
a remarkable spin-1 skyrmion in momentum space (Sec. IV).

B. Difference from Proca mass

The topological physics of the electron is tied to the quan-
tization of Hall conductivity. Our intriguing result is that
topological properties for the photon arise from the viscous
nature of the Hall conductivity. The Chern-Simons cou-
pling (Hall conductivity) κ �= 0 behaves as a gauge-invariant
photonic mass � that opens a low-energy band gap for elec-
tromagnetic waves at ω = 0 in the quantum fluid. We note
that the MCS mass is fundamentally different from the Proca
mass that is often encountered in superconductivity [16]. By
choosing a Lorenz gauge ∂μAμ = 0, the London penetration
depth λL of a superconductor is identified with the Proca mass
λ−1

L = m. Conversely, the MCS mass does not require the
specification of a gauge. The Stueckelberg [43] mechanism
is an alternative way of generating mass for the photon, but
in the quantum Hall effect, parity and time-reversal symmetry
breaking is captured specifically by the Chern-Simons cou-
pling term. Since the MCS mass does not preserve parity or
time-reversal symmetry, it admits the possibility of nontrivial
Chern phases Cem �= 0. The Hall viscosity is crucial to realize
the nontrivial topological electromagnetic phase ξ �= 0 and
makes this photonic mass spatially dispersive:

�(p) = λ−1σxy(p) = κ − ξ p2. (20)

To appreciate its significance, we translate the system to
the energy-momentum space and place the MCS theory on
a square lattice x = nxa and y = nya. Here nx,y ∈ Z is an
integer and a is the lattice constant. The lattice regularizes
the field theory at high k and ensures quantization of topo-
logical invariants like the photonic Chern number. Due to
discretization of space [44], the momentum is only unique up
to |kx,y| � π/a, which defines a torus T 2 in two dimensions.
That is, k is defined within the first Brillouin zone (BZ). The
dispersion relation of the dynamical ω �= 0 modes is found
straightforwardly,

ω2(k) = �d2(k), (21)
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FIG. 2. Bulk and edge dispersion of (a) continuum and (b) lattice
models of viscous Maxwell-Chern-Simons theory. Cyan and mag-
netic lines are positive- and negative-energy topological bands while
the black line is the chiral edge state. (a) Parameters are κ = ξ = 1
in the continuum theory a → 0. (b) Parameters are κa = ξ/a = 1 in
the lattice theory a �= 0.

where �d (k + g) = �d (k) is periodic in the reciprocal lat-
tice and gx,y = Nx,y2π/a is an arbitrary reciprocal vector
Nx,y ∈ Z:

�d (k) = [a−1 sin(kxa) a−1 sin(kya) �(k)]. (22)

�(k) is the viscous photon mass in the lattice theory and is
quadratic in the momentum:

�(k) = κ − ξ

(
2

a

)2[
sin2

(
kxa

2

)
+ sin2

(
kya

2

)]
. (23)

It is easy to check that the continuum limit is recovered when
a → 0. The dispersion relation is depicted in Fig. 2, which
shows the bulk bands and the gapless edge states within the
band gap. The positive energy ω = d > 0 bulk eigenstate is
then derived as

�Fk = 1√
2

[ �d × ẑ

| �d × ẑ| + i
�d × ( �d × ẑ)

d| �d × ẑ|

]
, (24)

which has been normalized to unit energy | �Fk|2 = |E|2 +
|Bz|2 = 1.

IV. SPIN-1 PHOTONIC SKYRMIONS

We now show that a spin-1 photonic skyrmion emerges
within the viscous Hall fluid. Our momentum space skyrmion
is analogous to those predicted in p-wave superconductors
[45]. The reason the skyrmion is spin-1 is because the MCS
mass �(k) also defines the representation theory of the 2+1D
Poincaré algebra [2],

jm = �(k)

|�(k)| = sgn[�(k)], (25)

which is a massive spin-1 excitation jm = ±1. The represen-
tation jm indicates whether the wave is right (+1) or left (−1)
circularly polarized in the x-y plane. The topology is inti-
mately tied to the spin-1 representation of the electromagnetic
field. The Berry curvature � is precisely [7]

� = −i(∂x �F ∗
k · ∂y �Fk − ∂y �F ∗

k · ∂x �Fk )

= d̂ · (∂xd̂ × ∂yd̂ ), (26)

FIG. 3. Topological phase diagrams for (a) continuum and
(b) lattice models of viscous Maxwell-Chern-Simons theory. Cem =
±2, 0 is the photonic Chern number of the positive energy band
ω > 0 for different parameters. κ and ξ are the Chern-Simons and
viscous Chern-Simons coupling, respectively. a is the lattice constant
of a square grid. κa2 = 0, 4ξ, 8ξ denote the phase transition lines
in the lattice model. These correspond to points of accidental de-
generacy, where the band gap closes at k = �, X/Y, M, respectively.
Importantly, conventional MCS theory ξ = 0 always corresponds to
a topologically trivial phase Cem = 0 in the lattice regularization.

where d̂ = �d/d is a unit vector. Note that the photonic Chern
number for the viscous Hall fluid is always an even integer
Cem ∈ 2Z:

Cem = 1

2π

∫
BZ

dk d̂ · (∂xd̂ × ∂yd̂ ) = 2N. (27)

N ∈ Z is the skyrmion winding number [46,47] that counts
the number of times d̂ (k) wraps around the unit sphere
T 2 → S2. We define the skyrmion number N and Chern num-
ber Cem through the photon wave function �F . The topological
invariant is a property of the U(1) gauge field coupled to the
viscous quantum Hall fluid. This is in stark contrast to elec-
tronic topological materials where the electron wave function
ψ plays the central role.

Importantly, at high-symmetry points k = �, X/Y, M, the
spin-1 representation [48,49] can only change if κξ > 0,
which requires the Hall coefficient C2 > 0. After a bit of work,
it can be shown that the Chern number is [50]

Cem = sgn[�(�)] + sgn[�(M )] − 2sgn[�(X )]

= sgn(κ ) + sgn

(
κ − 8ξ

a2

)
− 2sgn

(
κ − 4ξ

a2

)
. (28)

The eigenvalues at �(X ) = �(Y ) are identical and thus ap-
pear twice in Eq. (28). The topological phase diagram is
shown in Fig. 3. For standard MCS theory, the Hall viscosity
is zero ξ = 0 and the photonic Chern number is identically
zero Cem = 0 in the lattice regularization. This is due to the
inherent field doubling that occurs in a periodic system [51],
which cancels any parity anomalies that may arise in the
continuum limit. Hence, the Hall conductivity κ alone cannot
describe a photonic skyrmion or a topological electromagnetic
phase. A nontrivial phase with spin-1 photonic skyrmions
|Cem| = 2 is only possible when Hall viscosity is nonzero, ξ �=
0. Note that the continuum limit is recovered when the Hall
viscosity is sufficiently large

√
ξ/κ  a, such that the Chern

number reduces to Cem = sgn(κ ) + sgn(ξ ). The continuum
theory predicts the existence of a spin-1 photonic skyrmion.
Our work builds on the continuum theory to include lattice
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FIG. 4. (a) Unit cell of a square lattice with the primitive Wigner-Seitz cell shown in yellow. (b), (c), (d) The Brillouin zone of the three
phases Cem = ±2, 0 in the lattice regularized theory. κ > 0 and ξ > 0 are chosen positive such that (b) and (c) label type-I and type-II photonic
skyrmions, respectively. (d) The photonic ferromagnet. The eigenvalue at high-symmetry points denotes the sign of the Maxwell-Chern-Simons
mass jm = sgn(�) = ±1, which determines the spin-1 representation—if the field is right (+1) or left (−1) circularly polarized. The two
nontrivial phases possess skyrmion numbers of N = ±1 corresponding to a spin-1 Chern number of Cem = 2N = ±2.

symmetries, which delineates these skyrmions into type I and
type II. As a visualization, examples of type-I and type-II
photonic skyrmions are displayed in Fig. 4.

V. TOPOLOGICAL BOUNDARY CONDITIONS

We now analyze the edge physics for the viscous Hall
fluid using the MCS theory. We emphasize that the topolog-
ical boundary conditions are derived through a minimization
principle [Eq. (12)]. This is in stark contrast to the conven-
tional approach to solving for topological photonic waves.
Thus the edge wave solutions of the viscous Hall fluid satisfy
fundamentally different boundary conditions than photonic
crystal edge waves or edge magnetoplasmons [25]. These
Maxwellian waves are not only unidirectional but are also
eigenstates of the photon spin operator [9]. The most strik-
ing property is that the contacting medium has no influence
and cannot introduce a gap in the edge wave dispersion—
the edge wave always exists. This is also a fundamentally
unique property of the viscous Hall fluid, as conventional edge

magnetoplasmons simply disappear if the contacting medium
is a metal (e.g., gold-InSb interface).

The topological boundary conditions have an intuitive in-
terpretation in the RS basis. The open (Dirichlet) boundary
condition [Eq. (14)] implies all components of the field van-
ish at the boundary �F |x=0 = 0. This is similar to the no-slip
boundary condition in fluid mechanics. On the other hand,
the natural boundary condition [Eq. (15)] guarantees that the
induced surface current vanishes vx �F |x=0 = 0. Figure 5 shows
the truncated lattice corresponding to a viscous Hall fluid and
the unidirectional Maxwellian spin waves for two different
boundary conditions. The detailed derivation of the bulk-
boundary correspondence is appended to the Supplemental
Material [34].

VI. CONCLUSIONS

We have presented viscous Maxwell-Chern-Simons
theory—the fundamental (exactly solvable) model of a
topological electromagnetic phase, the topological physics
of which is ultimately governed by viscous (nonlocal)
Hall conductivity. To rigorously analyze the problem, we

FIG. 5. The two boundary conditions for the viscous Hall fluid that minimize the surface variation δSs = 0 at x = 0. (a) Schematic of the
truncated atomic lattice at x = 0. (b), (c) Plots of the normalized energy density u = | �F |2 = |E|2 + |Bz|2 of the chiral photonic edge state.
The parameters are κa = 0.1, ξ/a = 0.2, and kya = 0.1 as a demonstration. (b) The Dirichlet (open) boundary condition �F (0) = 0 has zero
measure at x = 0. (c) The natural boundary condition vx �F (0) = 0 is more localized at the surface and resembles an evanescent wave.
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introduced the viscous Maxwell-Chern-Simons Lagrangian
and derived the equations of motion, as well as the boundary
conditions, from the principle of least action. Our work puts
forth a fundamentally new field-theoretic approach to merge
the fields of topological photonics and quantum Hall fluids.
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