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Thermal equilibrium spin torque: Near-field radiative angular momentum
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Spin and orbital angular momentum of light plays a central role in quantum nanophotonics as well as
topological electrodynamics. Here, we show that the thermal radiation from finite-size bodies comprising
nonreciprocal magneto-optical materials can exert a spin torque even in global thermal equilibrium. Moving
beyond the paradigm of near-field heat transfer, we calculate near-field radiative angular momentum transfer
between finite-size nonreciprocal objects by combining Rytov’s fluctuational electrodynamics with the theory
of optical angular momentum. We prove that a single magneto-optical cubic particle in nonequilibrium with
its surroundings experiences a torque in the presence of an applied magnetic field (T -symmetry breaking).
Furthermore, even in global thermal equilibrium, two particles with misaligned gyrotropy axes experience
equal-magnitude torques with opposite signs which tend to align their gyrotropy axes parallel to each other. Our
results are universally applicable to semiconductors like InSb (magnetoplasmas) as well as Weyl semimetals
which exhibit the anomalous Hall effect (gyrotropic) at infrared frequencies. Our work paves the way towards
near-field angular momentum transfer mediated by thermal fluctuations for nanoscale devices.
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I. INTRODUCTION

Nanoscale radiative transfer plays an important role in a
wide range of scientific and engineering disciplines. It has
a variety of promising applications, including energy conver-
sion [1,2], thermal rectification [3,4], near-field spectroscopy
[5,6], near-field super-Planckian emission [7–10], etc. Over
the past few years, most of the investigations in this field have
focused on the near-field heat transfer, i.e., energy transferred
between various bodies in thermal nonequilibrium. It should
be emphasized that in global equilibrium there is no net flow
of energy in these systems [11–13]. Our goal in this paper is
to explore concepts beyond energy, i.e., angular momentum,
which can be exchanged/transferred between bodies even in
global thermal equilibrium. Thus, our result is similar to the
Casimir torque [14] obtained using birefringent crystals but
using a different underlying mechanism based on nonrecipro-
cal materials.

Thermal spin photonics is an emerging research area that
combines the thermal radiation and the spin angular momen-
tum (SAM) of light [15–18]. Nonreciprocal materials such as
semiconductors in external magnetic fields [19–21] and Weyl
semimetals [22] are of great interest in the context of thermal
spin photonics as they break the time-reversal symmetry and
lead to many interesting effects [23–28]. Recent work showed
that the thermal radiation of a nonreciprocal medium carries
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angular momentum (AM) [15,29,30]. There also exist new
spin-resolved thermal radiation laws applicable for nonrecip-
rocal bianisotropic media, which extend known Kirchhoff’s
laws otherwise valid only for reciprocal media [31]. How-
ever, these investigations are limited to planar geometries
and dipolar particles. More complex structured surfaces or
finite-size bodies have remained unexplored because of com-
putational difficulty. Recently, significant progress has been
made on numerical approaches in the context of near-field
heat transfer with nontrivial geometries. Those computational
tools include the scattering matrix [32,33], boundary-element
methods [34,35], volume-integral-equation methods [36], and
the thermal discrete dipole approximation method (TDDA)
[37–39]. However, so far none of them has been used for ana-
lyzing radiative angular momentum transfer in nonreciprocal
bodies. Here, we primarily aim to explore thermal AM radia-
tion in the near field and far field of finite-size nonreciprocal
objects.

We explore the AM-resolved thermal radiation features
in a system comprising magneto-optical bodies in external
magnetic fields (as shown in Fig. 1). Magneto-optical (MO)
media, such as doped indium antimonide (InSb), become
gyroelectric objects in the presence of magnetic fields and
hence exhibit stable nonreciprocity that can be controlled by
changing the magnitudes and the directions of the magnetic
fields [25,27]. We find that the thermal radiation from a single
gyroelectric body carries a net AM flux directed along its
gyrotropy axis (or the direction of externally applied magnetic
field) when the system is out of equilibrium with vacuum.
Consequently, the particle experiences a net torque along the
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FIG. 1. Schematic of the radiative AM transfer in a two-body
MO system in the presence of external magnetic fields. Two cubes
are separated by a distance d (center to center distance), and they
have the same size L. T1, T2, and T0 denote the temperatures of the
top cube, bottom cube, and environment, respectively.

opposite direction based on angular momentum conservation.
More interestingly, we also find that for a two-body system
with misaligned gyrotropy axes, AM transfer between two
bodies can occur regardless of the global thermal equilibrium.
The AM transfer results in a torque with the same magnitude
but opposite signs on two bodies trying to align the gyrotropy
axes parallel to each other. Moreover, the total torque on the
combined system is zero, which indicates that there is no net
AM flux transferred to the far field, satisfying the detailed
balance of AM flux between the combined system and the
environment at thermal equilibrium.

In this work, we utilize fluctuational electrodynamics (FE)
that combines the Maxwell electromagnetic theory of angu-
lar momentum and the fluctuation-dissipation theorem (FDT)
[40]. In particular, our numerical approach is generalized from
the TDDA method by a recent work studying the thermal
emission in MO systems [39]. In that work, the authors proved
the validity of the TDDA method for optically anisotropic
systems that can be described by an arbitrary electric permit-
tivity tensor (with μ = 1). We extend the TDDA approach to
describe the thermal AM flux in the near field and far field
of finite nonreciprocal bodies. Moreover, we apply our TDDA
approach for exploring the near-field and far-field transfer of
angular momentum in MO systems. We elucidate the origin
of the thermal-fluctuation-induced torque by computing the
angular momentum flux across different planes.

We also demonstrate the nontrivial role of nonreciproc-
ity in causing an equilibrium torque in a system which is
at global thermal equilibrium. Such an equilibrium torque
is nonintuitive but important since it opens a degree of
freedom for directional radiative AM transfer. Experimental
demonstration of such an effect requires misaligned mag-
netic fields which can be generated using spatial gradients
of two-dimensional magnetic fields on nanoscale objects. Our
work provides a way to explore many interesting effects in
the context of thermal AM in nonreciprocal systems. As the
dimensions of our system under consideration are smaller

than the wavelengths of thermal radiation, the contribution of
angular momentum is dominated by spin as opposed to orbital
angular momentum. This observation is consistent with recent
experiments in ion traps where orbital angular momentum has
been shown to couple only to quadrupolar optical transitions,
not dipolar optical transitions [41,42]. To emphasize the anal-
ogy with spin transfer torque in nanoelectronics [43,44], we
term our phenomenon thermal photonic spin transfer torque.
We also note that our work is applicable not only to magne-
tized plasmas like InSb but also to Weyl semimetal particles
which show the anomalous Hall effect (nonreciprocity) with-
out an applied magnetic field [45–47].

The rest of the paper will be organized as follows. In
Sec. II, we show our theoretical formalism of the TDDA
method to describe the radiative AM transfer in the near
field and far field of MO objects. In Sec. III, we discuss
our numerical results obtained with our TDDA approach. We
separate our discussion into the single-cube case and two-cube
case. For each case, we consider both the thermal equilibrium
and nonequilibrium conditions. In Sec. IV, we summarize our
observations in Sec. III and conclude the paper with some
additional remarks.

II. ANGULAR MOMENTUM IN FLUCTUATIONAL
ELECTRODYNAMICS

A. Radiative angular momentum flux

We consider a single- or two-cube system made of non-
reciprocal materials shown in Fig. 1. We focus on the
AM-resolved thermal radiation on the vacuum side of the
systems. For this purpose, momentum and AM will be stud-
ied in the context of the thermal radiation. These quantities
are important because they are conserved and thus follow
the conservation laws. First, the radiative momentum at the
observation point can be quantified by Poynting flux P and
the momentum flux density � [48]:

〈P〉 = 〈E × H〉, (1)

〈�〉 = −ε0〈E ⊗ E〉 − μ0〈H ⊗ H〉
+ 1

2ε0 Tr {〈E ⊗ E〉}I + 1
2μ0 Tr {〈H ⊗ H〉}I, (2)

where ⊗ denotes the outer product of two vectors and 〈· · · 〉
denotes the thermodynamic ensemble average. All the quan-
tities in Eqs. (1) and (2) are dependent on the position r and
time t . The radiation momentum transfer leads to a force F
on the objects that can be obtained by the conservation law of
momentum:

∫
S
〈�i j (r, t )〉dS j = − ∂

∂t

(∫
V

〈P(r, t )〉dV

)
i

= −〈Fi〉. (3)

Similarly, the radiation AM can be quantified by AM den-
sity J and AM flux density M [48]:

〈J(r, t )〉 = r × 〈E(r, t ) × H(r, t )〉, (4)

〈M(r, t )〉 = r × 〈�(r, t )〉, (5)
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which is given by the cross product of the position with the
Maxwell stress tenor. They also satisfy the continuity equation

∂

∂t
Ji + ∂

∂xl
Mli = 0. (6)

A nonreciprocal medium can lead to a nonzero radiation
AM flux and thus results in a torque τ on objects. This torque
can be obtained by the conservation law of AM, which is the
integral form of the continuity equation in Eq. (6):∫

S
〈Mi j (r, t )〉dS j = − ∂

∂t

(∫
V

〈J(r, t )〉dV

)
i

= −〈τi〉. (7)

All the quantities throughout the paper are described in SI
units. Next, we express the physical quantities in terms of their
Fourier transforms, such as

E(t ) =
∫ ∞

−∞

dω

2π
E(ω)e−iωt , (8)

H(t ) =
∫ ∞

−∞

dω

2π
H(ω)e−iωt (9)

for electromagnetic field, with similar notation for other
quantities. Then above quantities Q = {�, M, F, τ } are to be
integrated over frequency to obtain the total flux/force/torque
as Q = ∫ ∞

−∞
dω
2π

Q(ω)e−iωt . The electromagnetic field correla-
tions required for calculating densities and flux rates above are
obtained from the FDT. We can separate the contributions into
two parts: the first one accounts for the fluctuations of particle
dipole moments that will further induce electromagnetic field;
the second part involves environmental field fluctuations. The
FDT in our case gives [49]

〈pf,i(ω)p∗
f, j (ω

′)〉 = 2π h̄ε0δ(ω − ω′)

× Im {αi j (ω)}[1 + 2np(ω)] (10)

for the electric dipole fluctuations and

〈Ef,i(r, ω)E∗
f, j (r

′, ω′)〉 = 2π
h̄k2

0

ε0
δ(ω − ω′)

× Im {GEE ,i j (r, r′)}[1 + 2n0(ω)]
(11)

for the environmental electric field fluctuations, where k0 =
ω/c is the magnitude of the vacuum wave vector. Here, α̂

is the polarizability of the objects, and GEE (r, r′) is the
free-space electric-electric dyadic Green’s tensor [49]. The
temperatures of the particle Tp and the vacuum T0 enter these
expressions through the Bose-Einstein distribution nl (ω) =
1/(eh̄ω/kBTl − 1).

B. Numerical approach: Thermal discrete dipole approximation

To numerically compute the physical quantities introduced
in Eqs. (5) and (7), we extend the TDDA approach for MO
objects based on Ref. [39]. Here, we summarize the important
equations we have developed. More details can be found in
the Appendix.

Considering a two-body system interacting with a ther-
mal bath, we use a collection of Np (for object p) electric
point dipoles to describe the system. Each dipole is char-
acterized by a volume Vi,p and a polarizability tensor α̂i,p,

where p = 1, 2 denotes the body that the dipole belongs to and
i = 1, 2, . . . , Np indicates the ith subvolume in that object. We
group the electric dipoles and electric fields inside bodies in a
compact form:

P =
(

P1

P2

)
, P1 =

⎛
⎝ p1,1

...

pN1,1

⎞
⎠, P2 =

⎛
⎝ p1,2

...

pN2,2

⎞
⎠,

E =
(

E1

E2

)
, E1 =

⎛
⎝ E1,1

...

EN1,1

⎞
⎠, E2 =

⎛
⎝ E1,2

...

EN2,2

⎞
⎠. (12)

The notation C̄ (C = {p, E, . . . }) indicates that the dipoles or
the field are inside bodies, and in the following discussion, we
denote C without the overhead bar as the quantities in vacuum.

To obtain the total radiative AM flux in the near field or far
field (observation point), we need to compute the statistical
average of the AM flux density introduced in Eq. (5). Making
use of the Fourier transforms, the average of the AM flux
density can be expressed as

〈M(r)〉 = −2
∫ ∞

0

dω

2π

∫ ∞

−∞

dω′

2π
r

×Re[ε0〈E(r, ω) ⊗ E∗(r, ω′)〉e−i(ω−ω′ )t

+ μ0〈H(r, ω) ⊗ H∗(r, ω′)〉e−i(ω−ω′ )t

− 1
2ε0 Tr{〈E(r, ω) ⊗ E∗(r, ω′)〉e−i(ω−ω′ )t }I

− 1
2μ0 Tr{〈H(r, ω) ⊗ H∗(r, ω′)〉e−i(ω−ω′ )t }I].

(13)

Using FDT from Eqs. (10) and (11), the above expression
can be reduced to the integration of the terms containing
〈E(r, ω) ⊗ E∗(r, ω)〉 and 〈H(r, ω) ⊗ H∗(r, ω)〉. As we dis-
cussed in the last section, Eqs. (10) and (11) introduce two
different sources that contribute to the total field correlations.
The first one is the fluctuating particle dipoles determined by
the temperatures of bodies. In the TDDA approach, it can be
written as

〈P̄f (ω)P̄†
f (ω′)〉 = 2π h̄ε0δ(ω − ω′)[I + 2n̂B(ω, T1, T2)]χ̂ ,

(14)
where T1 and T2 are the temperatures of the two objects and
n̂B(ω, T1, T2) is a diagonal tensor with 3N elements given by
the Bose-Einstein distribution. χ̂ is a tensor combining the
imaginary part of the polarization tensor and the radiative
correction [49,50]. Using the general TDDA equations and
some algebraic manipulations, we obtain the following ex-
pressions for the correlations of electric and magnetic fields
at the observation point outside bodies:

〈E(r, ω) ⊗ E∗(r, ω)〉 = k4
0

ε2
0

GEE T̄−1〈P̄f P̄
†
f 〉T̄−1†G†

EE , (15)

〈H(r, ω) ⊗ H∗(r, ω)〉 = k4
0

ε2
0

GHE T̄−1〈P̄f P̄
†
f 〉T̄−1†G†

HE , (16)

where Ti j = δi jI − (1 − δi j )k2
0 ᾱiḠEE ,i j and GHE is the

magnetic-electric field Green’s tensor [Eq. (A15)]. More de-
tails about the derivation are shown in Sec. A 1.
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The second source is the environmental field fluctuation.
The fluctuational electric fields in the vacuum can induce
electric dipoles on the objects and then generate electromag-
netic fields at the observation point. In this case, the field-field
correlations at the observation point outside bodies are given
by (Sec. A 2)

〈E(r, ω) ⊗ E∗(r, ω)〉 = k4
0GEE T̄−1ᾱ〈Ēf Ē

†
f 〉ᾱ†T̄−1†G†

EE

+ k2
0GEE T̄−1ᾱ〈Ēf E

†
f 〉

+ k2
0〈Ef Ē

†
f 〉ᾱ†T̄−1†G†

EE , (17)

〈H(r, ω) ⊗ H∗(r, ω)〉 = k4
0GHE T̄−1ᾱ

〈
Ēf Ē

†
f

〉
ᾱ†T̄−1†G†

HE

+ k2
0GHE T̄−1ᾱ〈Ēf H

†
f 〉

+ k2
0〈Hf Ē

†
f 〉ᾱ†T̄−1†G†

HE , (18)

where

〈Ēf (ω)Ē†
f (ω′)〉 = 2π h̄ε0δ(ω − ω′)[1 + 2n0(ω)] Im ḠEE ,

(19)

〈Ēf (ω)E†
f (ω′)〉 = 2π h̄ε0δ(ω − ω′)[1 + 2n0(ω)] Im GEE ,

(20)

〈Hf (ω)Ē†
f (ω′)〉 = 2π h̄ε0δ(ω − ω′)[1 + 2n0(ω)] Im GHE

(21)

are the vacuum electric-electric field correlation inside bod-
ies, the vacuum electric-electric field correlation between
the object position and observation point, and the vacuum
electric-magnetic field correlation between the object posi-
tion and observation point, respectively. Generally, these two
sources have opposite contributions to the total far-field radi-
ations, and at global thermal equilibrium, they should cancel
each other to satisfy the detailed balance of the radiative AM
flux.

III. NUMERICAL RESULTS

In this section, we present the numerical results related to
the radiative AM transfer and the induced torques discussed
in the previous sections. In order to explore the role played
by nonreciprocity, we consider the near-field and far-field
radiation from single- and two-cube systems that are made
of nonreciprocal materials. Here, we choose doped InSb as an
example. InSb is a MO material whose permittivity model has
been well characterized experimentally [51–54]. Subjected
to an external magnetic field, it shows gyroelectric proper-
ties with the gyrotropy axis along the magnetic field. The
permittivity tensor in an arbitrary magnetic field takes the
form of ε̄ = ε∞[1 + (ω2

L − ω2
T )/(ω2

T − ω2 − i�ω)]I3×3 +
ε∞ω2

p[L3 × 3(ω)]−1 [29], where

L3×3(ω) =
⎡
⎣−ω2 − iγω −iωωcz iωωcy

iωωcz −ω2 − iγω −iωωcx

−iωωcy iωωcx −ω2 − iγω

⎤
⎦.

Here, ε∞ is the high-frequency dielectric constant, ωL is the
longitudinal optical-phonon frequency, ωT is the transverse
optical-phonon frequency, and ωp is the plasma frequency of
the free carriers of density n. � is the phonon damping con-

stant, and γ is the free-carrier damping constant. And ωci (i =
x, y, z) is the cyclotron frequency given by ωci = qBj/m f . All
the parameters are taken from [52,53], where doping density
n = 1017 cm−3, ε∞ = 15.7, ωL = 3.62 × 1013 rad s−1, ωT =
3.39 × 1013 rad s−1, ωp = 3.14 × 1013 rad s−1, � = 5.65 ×
1011 rad s−1, γ = 3.39 × 1012 rad s−1, and m f = 0.022me,
where me = 9.1094 × 10−31 kg is the electron mass.

A. Thermal AM radiation from a single cube

As shown in Figs. 2(a) and 3(a), a single cube made of
InSb is in the presence of a uniform magnetic field of 1 T
along the x direction. The first issue we want to address
now is the description of the thermal AM radiation from the
single cube using the formalism detailed in Sec. II. Instead
of using the SAM density S(r) = ε0

2ω
Im 〈E∗(r) × E(r)〉 +

μ0

2ω
Im 〈H∗(r) × H(r)〉 that was utilized to quantify the spin

component of the thermal radiation in our former work [29],
here, we define a tensor of angular momentum flux density M
[Eq. (5)] in analogy to the well-known Maxwell stress tensor.
It allows us to compute the total flux �tot of the radiative
AM in the near field and far field, making a better connection
between the thermal radiation and the induced torques. This
definition includes the spin and orbital parts of the electro-
magnetic field. It reveals the whole story of the AM in the
radiation and will not contradict the debate about the angular
momentum separation for electromagnetic fields [55–57].

Thermal equilibrium. We first consider a single cube in
equilibrium with vacuum (T1 = T0 = 300 K) and show the
balance of the total AM flux �tot in the far field (Fig. 2). To
clarify the origin of the balance, we separate the total flux
�tot into two parts: �tot = �p + �E . �p is induced by the
fluctuational particle dipoles of the cube that is determined
by the body temperature T1 (Sec. A 1), while �E comes from
the environmental field fluctuations which are dependent on
the environment temperature T0 (Sec. A 2). Then we compute
each AM flux �i (for i = x, y, z) across the plane we defined.
For this purpose, the AM flux is written as

�i =
∫

A
〈Mji〉dAj, (22)

which describes the integrated flux across a differential sec-
tion dA perpendicular to the radial vector R. Here, we choose
a surface that encloses the cube to compute the total AM flux
radiated to the far field. As shown in Fig. 2(b), the spectra
of the thermal AM flux �x,p and �x,E have the same magni-
tude but opposite signs at each frequency. It is noted that the
background thermal radiation in vacuum has no net flux. The
nonzero �x,E originates from the scattering of the incident
background thermal radiation by the particle. The total flux
�x,tot is zero as �x,p and �x,E perfectly cancel each other. The
vanishing of �x,tot satisfies the detailed balance of the AM
flux, and it indicates that there is no radiative torque applied
on the cube at thermal equilibrium.

For �y and �z perpendicular to the gyrotropy axis, both of
them are zero regardless of the temperatures and hence result
in zero total flux �i,tot (for i = y, z). Since �p and �E have
no contribution to the perpendicular component of the AM
flux, the torques along the y and z directions in this case will
always remain zero no matter whether the system is at thermal
equilibrium or not. Thus, in the following discussions on the
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FIG. 2. (a) Schematic: Thermal radiation of the AM from a single InSb cube at thermal equilibrium (T1 = T2 = 300 K). A 1-T external
magnetic field along the x direction is applied on the cube. A surface (virtual cube shown by the blue dashed line) that encloses the cube (the
real physical cube is shown in red) is chosen to compute the total AM flux (green arrows) radiated to the far field. (b) The spectrum of the
total radiative AM flux at thermal equilibrium. The total flux �tot is separated into two parts: one comes from the particle dipole fluctuations
(denoted �p), and the other one originates from the environmental field fluctuations (denoted �E ). At thermal equilibrium, �p and �E have
the same magnitude but opposite signs, resulting in zero total flux in the far field.

(d) Angular momentum ux through x = 0.5 m yz-plane (e) Angular momentum ux through x = -0.5 m yz-plane

x

z

= 0.5

x

z

= 0.5

(b) Size dependence(a) Schema c: Thermal Non-equilibrium (c)Total Angular Momentum Flux

= d

1 = 300

0 = 0

x

z

L

Single Cube

FIG. 3. Thermal radiation of the AM from a single InSb cube at thermal nonequilibrium. (a) Schematic: A cube is in the presence of a
magnetic field of 1 T along the x direction. The cube is at 300 K, while the environment is at 0 K. A surface that encloses the cube is chosen to
compute the AM flux radiated to the far field. (b) Spectrum of �x . At thermal nonequilibrium, �p and �E have unequal magnitudes, and hence,
the total AM flux �tot has a nonzero value. (c) Thermal nonequilibrium torque due to the AM radiation as a function of the cube size. The blue
line with dots is computed by TDDA-1 (approximating the entire cube by a single dipole), and the red line with squares is obtained by using
TDDA-125 (dividing each cube into 125 subvolumes and regarding each subvolume as a single dipole). (d) and (e) The spatial distribution of
the AM flux through yz planes at x = 0.5 μm and x = −0.5 μm, respectively. Spatial distributions are plotted at an energy of 0.2475 eV in the
thermal nonequilibrium case. The cube is assumed to be placed at the origin.
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nonequilibrium case of a single cube, we focus on only the
AM flux along the magnetic field (gyrotropy axis).

Thermal nonequilibrium. Here, we show that thermal
nonequilibrium can lead to a net radiative AM flux along the
gyrotropy axis. As shown in Fig. 3(a), We assume that the
environment is at 0 K while the cube is kept at the room
temperature T1 = 300 K. Since the temperature of the cube
is higher than the environment, �p has a larger magnitude
than �E at each frequency, and thus, their summation gives a
net AM flux along the magnetic field [Fig. 3(b)]. In addition,
due to the zero-point fluctuation, the background radiation
still exists at 0 K, and thus, the AM flux �E (originating
from the environment) in this case has a considerable value.
Figures 3(d) and 3(e) depict the spatial distributions of the
AM flux across yz planes on two sides of the cube. AM flux at
24.75 meV is shown here as a typical example. The AM loss
through the two planes (in front of and behind the cube) has
an equal contribution to the total AM flux, giving a nonzero
value of �x. The other components that are perpendicular to
the gyrotropy axis (�y and �z) still remain zero at thermal
nonequilibrium. In total, a torque along the external magnetic
fields is induced by the AM loss due to the thermal nonequi-
librium between the cube and environment.

In Fig. 3(c), we compute the thermal AM torque as a
function of the cube size and compare our numerical calcu-
lations to the dipole approximation. In TDDA-125, we divide
each cube into 125 subvolumes, while for TDDA-1, we use a
single-point dipole to represent the object. At small sizes, the
results from TDDA-1 and TDDA-125 show good agreement.
When the size of the cube increases, TDDA-125 has a differ-
ent magnitude as it takes the shape effect into consideration,
which should be more precise than TDDA-1 for larger-size
objects. Therefore, for the following examples, we focus on
only the numerical results obtained by TDDA-125.

B. Thermal AM transfer in a two-cube system

In the previous section, we showed that, for a single cube,
there is no net AM flux going to the far field at thermal
equilibrium. The nonvanishing AM flux along the gyroelectric
axis exists only when the cube and the environment have
different temperatures. However, things can be different for
a two-body MO system. In a two-cube system, we find that
a net AM flux can also exist in the near field between two
cubes when the magnetic fields on each cube are misaligned.
Such AM transfer induces an equilibrium torque between the
cubes, which can be tuned by changing the angle between the
magnetic fields.

Thermal equilibrium. In Fig. 4, the two-cube system is at
global thermal equilibrium, where T1 = T2 = T0 = 300 K. T1,
T2, and T0 denote the temperatures of the top cube, bottom
cube, and vacuum, respectively. To compute the total AM
flux radiating from the top cube, we choose a box enclosing
the top cube and calculate the flux across the surface M · n̂r.
If the magnetic fields on two cubes are parallel [Figs. 4(a)
and 4(b)], there is no AM flux going out from either cube,
which is similar to the single-cube case. However, once the
magnetic fields are misaligned, the gyrotropy axes of the
cubes are along different directions [Figs. 4(c) and 4(e)]. And
then, surprisingly, there is a net AM flux along the z direction

(perpendicular to the plane formed by the two gyrotropy axes)
which is being exchanged between two cubes. Meanwhile, �x

and �y still remain zero regardless of the angle β.
Such AM transfer of �z is interesting but nonintuitive

since it can occur despite the global thermal equilibrium. It
is also important to point out that the presence of the nonzero
radiative AM transfer at the global thermal equilibrium does
not lead to any thermodynamic contradictions. To demonstrate
this argument, we separately compute the AM flux �z across
different xy planes to reveal the origins of the AM transfer
(Fig. 5). Here, we typically choose three planes to show the
flux �z: the midplane between two cubes [Fig. 5(b)], the top
plane above the top cube [Fig. 5(c)], and the bottom plane
below the bottom cube [Fig. 5(d)]. The mid xy plane shows
the near-field AM transfer between the cubes, while the top
and bottom planes show the AM flux going to the far field
from each cube. Here, we do not show the AM flux leaking
through the other surfaces since their contributions to �z are
negligible compared to the xy planes we showed above. From
Fig. 5, it is easy to find that the AM flux �z mainly transfers
through the mid xy plane, with a magnitude almost two orders
larger than the top and bottom planes. Moreover, the fluxes
�z across the top and bottom planes have the same magnitude
but different signs (directions) at each frequency. Therefore,
considering the total flux radiating to the environment from
the combined two-cube system, Figs. 5(c) and 5(d) cancel
each other and give zero net flux of �z. This means that
such an AM transfer is a localized phenomenon and will not
cause any net flux that transfers between the system and the
surrounding environment, conserving AM globally.

With a net AM flux exchanged between the cubes, an
equilibrium torque is induced on each cube. Such an equi-
librium torque can be tuned by changing the angle between
the magnetic fields and vanishes when the magnetic fields are
parallel. Figure 6 plots the magnetic field dependence of the
equilibrium torque. Here, we assume that the magnetic field
on the bottom cube is fixed while we change the angle β of
the B field on the top cube. Similar to what we did in the
last section, we separate the torques into two parts originating
from the particle dipole fluctuations Mp and the environment
field fluctuations ME .

First, we consider only the torques within the xy plane
where the magnetic fields are applied. In this case, Mp and
ME have the same magnitude but different signs and hence
result in zero net torque within the xy plane on each cube.
The vanishing of the torque in xy planes is independent of
β and is always true at global thermal equilibrium. Unlike the
single-body system where Mp and ME should be exactly along
its gyrotropy axis (magnetic field), here, they can be slightly
misaligned with their own gyrotropy axis. Such misalignment
originates from the interaction between the cubes since Mp

(ME ) of the bottom cube in a fixed magnetic field varies when
we tune the direction of the B field on the top cube [the left
and middle plots in Fig. 6(b)]. The torque that is perpendicular
to the external magnetic field has a much smaller magnitude
than the parallel component, indicating that the interaction is
weak at global thermal equilibrium.

Along the z direction perpendicular to the plane formed by
the magnetic fields, a torque is induced by the AM transfer
between two cubes despite global thermal equilibrium (the
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FIG. 4. Radiative AM transfer in a two-cube system at global thermal equilibrium (T1 = T2 = T0 = 300 K). (a) Schematic: The parallel
magnetic fields with the same magnitude B1 = B2 = 1 T are applied on both cubes. The size of the cubes is L = 500 nm, and they are separated
by d = 1 μm (center to center distance). (b) The spectrum of the total AM flux �z emitted out from the top cube. In parallel and antiparallel
magnetic fields, �z is always zero at global thermal equilibrium. (c) Schematic: The magnetic fields applied on the two cubes have the same
magnitude B1 = B2 = 1 T, but with an angle β between each other. The size of the cubes is L = 500 nm, and they are separated by d = 1 μm
(center distance). (d) and (e) Spectra of the total AM flux �i (for i = x, z, respectively) radiated from the top cube. The spectra are plotted with
different magnetic field directions β. In the misaligned magnetic fields, �z has a nonzero value, while �x still remains zero.

right plots in Fig. 6). When the magnetic fields on two cubes
are parallel or antiparallel, there is no torque applied because
the AM transfer is prohibited. Otherwise, each cube feels a
torque along the z direction trying to align their gyrotropy axes
parallel to each other. Such torques have the same magnitude
but opposite signs, and therefore, there is no net torque on the
combined system, conserving the global AM at thermal equi-
librium. Here, we want to note that the “thermal equilibrium”
discussed in this work refers to only the global equality of
temperature. Due to the nonzero torque induced by the near-
field AM transfer, the condition of mechanical equilibrium
is broken. The full mechanical dynamics of the particles ac-
counting for all forces, including the attractive Casimir force
between them, is beyond the scope of this work and will be
considered in a future work.

At thermal equilibrium, there are two distinct zero-torque
configurations: parallel gyrotropy axes (β = 0) and antipar-
allel gyrotropy axes (β = π ). If the system starts from the

antiparallel configuration (β = π ), two cubes have a tendency
to relax back to the parallel configuration. This means that
β = π is an unstable equilibrium point. On the other hand, if
two cubes are left in the parallel configuration (β = 0), they
will remain in it and tend to go back after a small disturbance.

Finally, we plot the temperature dependence and distance
dependence of the torque τz in Fig. 7. Temperature affects
the AM flux through the mean thermal energy �(ω, T ) =
h̄ω/2 + h̄ω/[exp (h̄ω/kBT ) − 1]. Since the mean thermal en-
ergy is approximately constant over the frequency range of
interest, the magnitude of τz increases proportionately with
the temperature. The left panel in Fig. 7(b) demonstrates the
spectrum for �z as a function of distance between two cubes.
At each frequency, the sign (the direction of the radiative AM
flux) stays the same, while the magnitude decays as a function
of distance. The right panel in Fig. 7(b) shows the torque
along the z direction after doing an integral of �z over fre-
quency. Similarly, the magnitude of the torque τz decreases as
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FIG. 5. Near-field AM flux in a two-cube system at global ther-
mal equilibrium (T1 = T2 = T0 = 300 K). The size of the cubes is
L = 500 nm, and they are separated by d = 1 μm. The magnitudes
of the external magnetic fields are B1 = B2 = 1 T. (a) Schematic.
(b)–(d) The spectra of AM flux �z across three different xy planes
as shown in (a). Here, β is assumed to be π/2. (c) and (d) show
the radiation flux to the environment, and they contribute oppositely
to the total flux �z of the combined two-cube system. At thermal
equilibrium, (c) and (d) perfectly cancel each other, giving no net
torque on the combined system.

a function of distance, while its direction remains unchanged.
This confirms that the radiative AM transfer for �z at global
thermal equilibrium originates from the near-field interaction
between the cubes, as the interaction strength decays with
increasing separation between them.

Thermal nonequilibrium. Above we showed that, for a two-
cube system at global thermal equilibrium (T1 = T2 = T0),
AM transfer can happen only along the z direction. And we
also pointed out that there is no torque within the xy plane at
global thermal equilibrium due to the balance between Mp and
ME , which are slightly misaligned with their gyrotropy axes.
Here we are going to show that nonequilibrium (T1 �= T 2)
helps amplify the interaction between the cubes, making the
AM transfer between two cubes much stronger than the equi-
librium case.

Figure 8 depicts the magnetic field dependence of the ra-
diative AM torques at thermal nonequilibrium. As shown in
Fig. 8(a), we assume that the top cube is heated up to T1 =
500 K, while the bottom cube remains at equilibrium with
the environment (T2 = T0 = 300 K). Similarly, we tune the
direction of the magnetic field on the top cube and compute
the nonequilibrium torque as a function of β. In this case, the
torques on each cube are strongly modified due to the near-
field AM transfer [Figs. 8(b)–8(d)]. First, the torques within
the xy plane no longer follow the direction of the external

magnetic fields. On the contrary, the torques in the xy pane
have a big departure from the gyrotropy axes. Second, the
torque in the xy plane on the bottom cube (in a fixed magnetic
field) also shows a strong dependence of the magnetic field
B1 applied on the top cube. At each angle β, the torques on
two cubes have comparable magnitudes and opposite signs.
Their summation gives a smaller total torque on the combined
system, which is one order smaller than the torque on each
cube. Third, the torques along the z direction are amplified
by two orders compared with the equilibrium case, directly
indicating that the radiative AM transfer is strongly amplified
because of the unequal temperatures of two cubes.

IV. ADDITIONAL REMARKS AND CONCLUSIONS

We demonstrated radiative AM transfer different from
typically considered heat (energy) transfer in nonreciprocal
systems. We have developed a TDDA approach based on fluc-
tuational electrodynamics for analyzing the thermal AM flux
density in the near field and far field of finite nonreciprocal
bodies. Our work reveals that the AM loss due to far-field
radiation plays a fundamental role in generating a thermal AM
torque along the gyroelectric axis of a single nonreciprocal
body at thermal nonequilibrium. The connection between the
thermal radiation of nonreciprocal bodies and the induced
torques is important for exploring new ways of directional
thermal AM transfer.

We also found that in a nonreciprocal system, the near-field
thermal AM between two objects can be nonzero despite the
zero heat (energy) transfer. This is a localized phenomenon
that happens because of near-field interaction between the two
bodies and decays with increasing distance between the bod-
ies. Also, such near-field interaction will not contribute to any
net radiative AM flux at the far field for the combined system.
Moreover, the near-field AM flux across the plane between
two bodies does not always have to be along their gyrotropy
axes. With misaligned gyroelectric axes, an AM perpendic-
ular to the plane formed by two gyrotropy axes can transfer
between two bodies despite global thermal equilibrium. The
AM transfer induces torques on both cubes trying to align
two gyrotropy axes parallel to each other. At global thermal
equilibrium, the torques on two cubes have the same magni-
tude but opposite signs, and the net torque on the combined
system is zero, satisfying the detailed balance of AM ex-
change between the combined system and the environment at
equilibrium.

Some recent works predicted that the torques can be
induced by vacuum friction of a rotating object made of
reciprocal isotropic media [58–61]. These predictions are of
high interest in the context of nanophotonics [16,62–67] and
Casimir physics [14,68,69], as they fundamentally originate
from quantum and thermal fluctuations. However, such rota-
tional vacuum frictions still remain at the theoretical level,
and so far, no experimental observation has been done due
to the extremely small magnitudes of the torques, which are
far below the sensitivity that can be achieved by the torque
sensor [70]. Many theoretical works tried to enhance the
vacuum friction to make it more measurable than a single
rotating particle [58], such as using surface plasmon reso-
nance [59] and surface photon tunneling [61]. Recently, an
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FIG. 6. Torques induced by radiative AM transfer at global thermal equilibrium (T1 = T2 = T0 = 300 K) as functions of magnetic field
angle β. The total torque on each cube is separated into two parts according to its origins: Mp is induced by fluctuational dipoles, and ME

comes from field fluctuations. Mtot is the total torque on each cube that combines Mp and ME . Other parameters are L = 500 nm, B1 = B2 = 1
T, and d = 1 μm. (a) Torques on the top cube in a varied magnetic field. (b) Torques on the bottom cube in a fixed magnetic field along the x
axis.

experimental demonstration of the most sensitive torque mea-
surement was done with a levitated nanoparticle, improving
the torque sensitivity by a few orders [64] and showing the
feasibility of detecting the rotational vacuum friction near a
surface. And as we have shown in this work, the thermal AM
torque in a MO system in the presence of external magnetic
fields has a magnitude comparable to the sensitivity that can
be achieved by the levitated torque sensor [64], and it is tun-
able by changing the external magnetic fields. Therefore, the
thermal AM torques in the MO system will be experimentally
detectable in the near future.

Finally, the TDDA approach we have developed in this
work can be applied to describe the radiative AM transfer of
finite objects with arbitrary size and shape. This formalism
allows us to compute the radiative AM flux in the near field as
well as far field of the MO bodies with arbitrary permittivity
tensors. We have used this TDDA approach to explore how
the nonreciprocity affects the radiation of AM in single-cube
and two-cube systems. Our work provides a way to describe
AM-resolved thermal radiation involving finite MO bodies of
arbitrary shape.
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APPENDIX A: TDDA APPROACH
TO RADIATIVE AM FLUX

In this section, we develop a TDDA method for calculating
the AM flux density based on former works [37–39]. Here,
we separate the discussion into two parts: particle dipole
fluctuations and environmental field fluctuations. These two
contributions correspond to the emission of objects and the
absorption from the surrounding environment, respectively.
And they will be balanced when the system is in equilibrium
with the environment.

In particular, here, we consider the case of two finite ob-
jects assumed to be at fixed temperatures T1 and T2, and
they both interact with a thermal bath at temperature T0. We
assume that these two objects are described by a collection
of Np (for object p) electric point dipoles. Each dipole is
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FIG. 7. (a) Temperature dependence of the near-field AM flux
�z across the mid xy plane between two cubes. The system remains
at global thermal equilibrium T1 = T2 = T0 while tuning the temper-
ature. Here, we assume that β = π/2, d = 1 μm, and L = 500 nm.
Left: Spectra of � with different temperatures. Right: Induced torque
as a function of temperature. (b) Distance dependence of the near-
field AM flux �z that goes through the mid xy plane between two
cubes. The red dashed line is plotted by multiplying the torque at
d = 2 μm and (2/d )6, which is the ratio to the power of 6 between
the torques at two distances. Parameters are T1 = T2 = T0 = 300 K,
β = π/2, d = 1 μm, and L = 500 nm. Left: Spectra of �z at dif-
ferent distances. Right: The equilibrium torque τz as a function of
distance.

characterized by a volume Vi,p and a polarizability tensor ˆαi,p,
where p = 1, 2 denotes the body that the dipole belongs to and
i = 1, 2, . . . , Np indicates the ith subvolume in that object.
We group the electric dipoles and electric fields in a compact
form,

P =
(

P1

P2

)
, P1 =

⎛
⎝ p1,1

...

pN1,1

⎞
⎠, P2 =

⎛
⎝ p1,2

...

pN2,2

⎞
⎠,

E =
(

E1

E2

)
, E1 =

⎛
⎝ E1,1

...

EN1,1

⎞
⎠, E2 =

⎛
⎝ E1,2

...

EN2,2

⎞
⎠. (A1)

Then we can define the polarizability tensor as ᾱ = (
ᾱ1 0
0 ᾱ2

)

and ᾱp = diag(α̂1,p, . . . , α̂Np,p) (p = 1, 2). And each element
α̂i,p is given by [39]

α̂i,p =
[

1

Vp

(
L̂p + [ε̂p − I]−1) − i

k3
0

6π
I

]−1

, (A2)

where ε̂p is the dielectric permittivity tensor, Vp is the volume
of each discrete dipole, and L̂p is the depolarization tensor,

FIG. 8. Thermal nonequilibrium torques when the top cube is
heated up to T1 = 500 K and the bottom cube still remains at thermal
equilibrium with the surroundings, T2 = T0 = 300 K. The size of
the cubes is L = 500 nm, and they are separated by d = 1 μm.
(a) Schematic of the thermal nonequilibrium case. (b)–(d) Torques
as functions of the direction of the magnetic field. The magnetic field
on the bottom cube is fixed, while the direction of the magnetic field
on the top cube is varied from zero to 2π .

which is L̂p = (1/3)I for the cubic volume mesh element
[39,71,72].

To compute the total radiative momentum and AM flux
that are described in terms of the surface integral of the flux
densities as Eqs. (3) and (7), we need to compute the statistical
average of the momentum and AM flux density by Eqs. (2)
and (5). For ease of analysis, the average is expressed in terms
of the Fourier transforms,

〈�(r)〉 = −2
∫ ∞

0

dω

2π

∫ ∞

−∞

dω′

2π

× Re[ε0〈E(r, ω) ⊗ E∗(r, ω′)〉e−i(ω−ω′ )t

+ μ0〈H(r, ω) ⊗ H∗(r, ω′)〉e−i(ω−ω′ )t

− 1
2ε0 Tr {〈E(r, ω) ⊗ E∗(r, ω′)〉e−i(ω−ω′ )t }I

− 1
2μ0 Tr{〈H(r, ω) ⊗ H∗(r, ω′)〉e−i(ω−ω′ )t }I]

(A3)

for momentum flux density and

〈M(r)〉 = −2
∫ ∞

0

dω

2π

∫ ∞

−∞

dω′

2π
r

× Re[ε0〈E(r, ω) ⊗ E∗(r, ω′)〉e−i(ω−ω′ )t

+ μ0〈H(r, ω) ⊗ H∗(r, ω′)〉e−i(ω−ω′ )t

− 1
2ε0 Tr {〈E(r, ω) ⊗ E∗(r, ω′)〉e−i(ω−ω′ )t }I

− 1
2μ0 Tr{〈H(r, ω) ⊗ H∗(r, ω′)〉e−i(ω−ω′ )t }I]

(A4)
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for AM flux density. Here, we have used the proper-
ties E(r,−ω) = E(r, ω)∗ and H(r,−ω) = H(r, ω)∗. Us-
ing FDT from Eqs. (10) and (11), the above expression
can be reduced to the integration of the terms contain-
ing 〈E(r, ω) ⊗ E∗(r, ω)〉 and 〈H(r, ω) ⊗ H∗(r, ω)〉. In most
cases in the remaining discussion, we drop the argument ω

to alleviate the notation. In the next two sections, we will
separately formalize the TDDA approach for computing the
AM flux due to the electric dipole fluctuations and the elec-
tromagnetic field fluctuations.

1. Electric dipole fluctuation

We start by decomposing the local field E(r) outside
the objects into the source field E0(r) and the induced part
Eind (r):

E(r) = E0(r) + Eind (r). (A5)

The source field E0(r) originates from the fluctuating dipole
inside the objects and is given by

E0(r) = k2
0

ε0
GEE P̄f , (A6)

where GEE = (ĜEE (r, r1), . . . , ĜEE (r, rN )) is the row vector
of the free-space Green tensors:

ĜEE (r, r′) = eik0R

4πR

[(
1 + ik0R − 1

k2
0R2

)
1̂

+
(

3 − 3ik0R − k2
0R2

k2
0R2

)
R ⊗ R

R2

]
, (A7)

where R = r − r′ and R = |r − r′|. ⊗ denotes the outer prod-
uct of two vectors. The dyadic Green’s tensor connects the
fluctuating dipoles to the observation point outside the objects.
P̄f is the fluctuating dipoles inside the objects and can be
obtained by FDT,

〈P̄f (ω)P̄†
f (ω′)〉 = 2π h̄ε0δ(ω − ω′)[I + 2n̂B(ω, T1, T2)]χ̂ ,

(A8)
where n̂B(ω, T1, T2) is a diagonal tensor with 3N elements
given by the Bose-Einstein distribution

n̂B(ω, T1, T2) =
(

n1(ω)I3N1×3N1 0̂
0̂ n2(ω)I3N2×3N2

)
(A9)

and we have also introduced

χ̂ = 1

2i
(α̂ − α̂†) − k3

0

6π
α̂†α̂ (A10)

as the radiative correction [49,50].
The second term in Eq. (A5) originates from the induced

dipoles: Eind (r) = k2
0

ε0
GEE P̄ind . The induced dipole P̄ind comes

from the electric field inside the bodies as P̄ind = ε0ᾱĒ, while
Ē can be obtained by solving the TDDA equation

Ē = Ē0 + k2
0dḠEE ᾱĒ, (A11)

where dḠEE = ḠEE − diag{ḠEE } and ḠEE is the matrix of
the dyadic Green’s tensors inside bodies that is also defined
by Eq. (A7). Here, the overhead bar notation indicates that the
quantities are evaluated inside the bodies, and it will be the

same for other quantities in the following discussion. Solving
Eq. (A11), we get the induced electric field

Eind (r) = k2
0

ε0
GEE T̄−1P̄f , (A12)

where

Ti j = δi jI − (1 − δi j )k
2
0 ᾱiḠEE ,i j . (A13)

Now, making use of Eq. (A13), we can compute the electric
field correlation 〈E(r, ω) ⊗ E∗(r, ω)〉 which is required to
obtain AM flux:

〈E(r, ω) ⊗ E∗(r, ω)〉 = k4
0

ε2
0

GEE T̄−1
〈
P̄f P̄

†
f

〉
T̄−1†G†

EE . (A14)

Similarly, the magnetic field correlation 〈H(r, ω) ⊗ H∗(r, ω)〉
can be obtained by replacing the electric-electric dyadic
Green’s tensor by the magnetic-electric Green’s tensor:

ĜHE (r, r′) = eik0R

4πR

(
1 + i

k0r

)√
ε0

μ0

⎡
⎣ 0 −r̂z r̂y

r̂z 0 −r̂x

−r̂y r̂x 0

⎤
⎦,

(A15)
where r̂ = R/R (i = x, y, z). Then we have

〈H(r, ω) ⊗ H∗(r, ω)〉 = k4
0

ε2
0

GHE T̄−1〈P̄f P̄
†
f

〉
T̄−1†G†

HE .

(A16)

2. Electromagnetic field fluctuation

Considering the interaction with the thermal bath, the fluc-
tuating electromagnetic field will lead to the AM transfer and,
to some extent, balances the contribution from the electric
dipole fluctuation. The fluctuating electromagnetic field also
fulfills the FDT which gives

〈Ēf (ω)Ē†
f (ω′)〉 = 2π h̄ε0δ(ω − ω′)[1 + 2n0(ω)] Im ḠEE ,

(A17)

〈Ēf (ω)E†
f (ω′)〉 = 2π h̄ε0δ(ω − ω′)[1 + 2n0(ω)] Im GEE ,

(A18)

〈Hf (ω)Ē†
f (ω′)〉 = 2π h̄ε0δ(ω − ω′)[1 + 2n0(ω)] Im GHE .

(A19)

We note that, here, we also considered the correlation between
fluctuating fields inside bodies and at an observation point out-
side bodies by Eqs. (A18) and (A19). The reason is because
the induced electric dipoles generate electric/magnetic field
at the observation point that correlates to the local fluctuating
field. However, we have ignored the correlation between fluc-
tuating magnetic fields due to the unit permeability (μ = 1) of
the media we are studying.

As usual, we decompose the local electric field at the
observation point into the source field and the induced field,

E(r) = E0(r) + Eind (r). (A20)

The source field E0 in this case is the bosonic field of the
thermal bath, so that E0 = E f . The second term is the induced

electric field from the induced dipoles Eind (r) = k2
0

ε0
GEE P̄ind .
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The induced dipole P̄ind in this case can be obtained by solv-
ing the TDDA equation for the electric dipole,

P̄ind = P̄0 + k2
0 ᾱdḠEE P̄ind , (A21)

where P̄0 = ε0ᾱĒf is directly induced by the local fluctuating
field. Then we write the total electric field E(r) as

E = E f + k2
0 ᾱGEE T −1ᾱĒ f . (A22)

The first term E f on the left-hand side (LHS) denotes the local
fluctuating field at the observation point. Ē f in the second
term on the LHS is the fluctuating field inside bodies. The
correlation of electric field at the observation point is obtained
with the help of Eq. (A22):

〈E(r, ω) ⊗ E∗(r, ω)〉 = k4
0GEE T̄−1ᾱ

〈
Ēf Ē

†
f

〉
ᾱ†T̄−1†G†

EE

+ k2
0GEE T̄−1ᾱ

〈
Ēf E

†
f

〉
+ k2

0

〈
Ef Ē

†
f

〉
ᾱ†T̄−1†G†

EE . (A23)

Similarly, replacing GEE with GHE , we can get the corre-
lation of the magnetic field,

〈H(r, ω) ⊗ H∗(r, ω)〉 = k4
0GHE T̄−1ᾱ

〈
Ēf Ē

†
f

〉
ᾱ†T̄−1†G†

HE

+ k2
0GHE T̄−1ᾱ

〈
Ēf H

†
f

〉
+ k2

0

〈
Hf Ē

†
f

〉
ᾱ†T̄−1†G†

HE . (A24)

Now, combining Eqs. (A4), (A14), (A16), (A23), and
(A24), we can compute the total AM flux through arbitrary
observation planes.
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