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Single-photon pulse induced giant response in N> 100
qubit system
Li-Ping Yang 1 and Zubin Jacob 1✉

The temporal dynamics of large quantum systems perturbed weakly by a single excitation can give rise to unique phenomena at
the quantum phase boundaries. Here, we develop a time-dependent model to study the temporal dynamics of a single photon
interacting with a defect within a large system of interacting spin qubits (N > 100). Our model predicts a quantum resource, giant
susceptibility, when the system of qubits is engineered to simulate a first-order quantum phase transition (QPT). We show that the
absorption of a single-photon pulse by an engineered defect in the large qubit system can nucleate a single shot quantum
measurement through spin noise read-out. This concept of a single-shot detection event (“click”) is different from parameter
estimation, which requires repeated measurements. The crucial step of amplifying the weak quantum signal occurs by coupling the
defect to a system of interacting qubits biased close to a QPT point. The macroscopic change in long-range order during the QPT
generates amplified magnetic noise, which can be read out by a classical device. Our work paves the way for studying the temporal
dynamics of large quantum systems interacting with a single-photon pulse.
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INTRODUCTION
Recent developments in controlling large quantum systems in cold
atoms systems1, ion traps2, and superconducting qubit systems3

have opened the new era of quantum simulation. In particular, the
study of continuous quantum phase transitions and many-body
localization promises to be one of the major applications for
quantum computers4. Simultaneously, control over large quantum
systems allows sensing and parameter estimation with unprece-
dented sensitivity. In particular, continuous quantum phase
transitions combined with repeated measurements can be
exploited as a resource for metrology5,6. This opens the question
whether a giant response can occur in a large quantum system
even when weakly perturbed by a single photon7–10. Such a
system with a giant response can lead to single-shot read-out
without the need for repeated measurements.
We develop a time-dependent computational model to study

the response of a large quantum system (N > 100 qubits) on
excitation by a single-photon pulse. We discover a giant response
arising from a single photon interacting with a defect state
coupled to a large system of collective qubits (N > 100), which can
function as a quantum amplifier11. We believe this striking giant
response will motivate experiments of the time dynamics of large
quantum systems excited by a single-photon pulse. While we
capture the essential physics through a minimalistic model, it
points to single-photon nucleated space-time theory of quantum
phase transitions where even excited states along with ground
states play an important role. This can lead to an exciting frontier
at the interface of condensed matter physics and quantum optics.
Our proposal can be implemented in a broad range of qubit
systems and can lead to devices such as single-photon detectors
in spectral ranges inaccessible by current technologies.
We show that giant susceptibility can be exploited as a powerful

quantum resource and we overcome two outstanding challenges
for the field. Firstly, previous proposals of metrology exploiting
second-order QPTs (see Table 1) only give rise to large fidelity

susceptibility, not a directly observable quantity. The quantum
susceptibility is always low for previously studied second-order
QPTs making it detrimental for practical experimental realization.
Existing schemes propose to use repetitive measurements on a
weak output signal to perform high precision parameter estima-
tion i.e. quantum metrology—fundamentally different from our
claim of single-photon pulse driven giant response. For example,
in the transverse Ising model, the magnetic susceptibility χ
diverges at an extremely low speed with the spin number N (χ ~
log(N))12. Thus, no giant response can be obtained for
intermediate-scale quantum systems. On the contrary, the
susceptibility diverges with N at the first-order QPT point in our
proposed model. Secondly, the time dynamics of a weak signal
(e.g., a single-photon pulse) interacting with any large system near
a quantum phase transition has never been explicitly demon-
strated. We overcome this challenge by exploiting recent
developments in quantum pulse scattering theory13–16.
Exploiting giant quantum susceptibility is an approach funda-

mentally different from quantum interferometers used for para-
meter estimation or quantum sensing/metrology17–19. The
enhanced sensitivity in quantum interferometers benefits from
the accumulated phase from a large number of synchronized non-
interacting particles in repeated measurements20–22. In contrast,
the giant sensitivity in our scheme originates from the singular
behavior of strongly correlated systems at the phase transition
point11,23. This giant response can give rise to classical single-shot
measurements. In Table 1, we contrast the giant quantum
susceptibility proposed in this paper with previously well-known
quantum entanglement/squeezing19,24,25 and quantum
criticality5,6.
The dynamic process of the proposed interacting-qubit system

is conceptually similar to the counting events in single-photon
avalanche diodes (SPADs) and SNSPDs. This is clarified on
contrasting our approach with the well-established and important
field of quantum linear amplifiers26,27. The gain of linear quantum
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amplifiers arises from the coherent pumping in the ancillary
modes. Simultaneously, phase information is encoded in the
quadratures of the signal modes which is preserved during the
amplification. However, the quantum gain of our system results
from the macroscopic change in the order parameter during the
QPT. The phase information in the input signal (e.g., the pulse
shape) is lost during the amplification and only the pulse number
information (0 or 1) is read out by the amplifier.

RESULTS
Working mechanism
We now discuss the working mechanism and implementation of
our model. The first step is the transduction (absorption) of the
incident single photon in an engineered defect. This process is
similar to the generation of the first electron-hole pair in single-
photon avalanche diode or the first photo-emission event in the
photo-multiplier tube. The highly efficient transduction is realized
via a Λ-structure transition as shown in Fig. 1. In contrast to a two-
level absorber, this Λ-transition defect has three main benefits: (1)
higher absorption probability28,29; (2) longer lifetime of the
destination state ej i13 conducive for effecient read-out; (3)
connection of the optical transition in the absorber and the RF-
frequency dynamics in the interacting-qubit system (the ampli-
fier). One promising example of such kind of absorber is a
nitrogen-vacancy (NV) center. The states gj i and ej i correspond to
the two ground spin states 0j i and þ1j i of the NV. The T1 time
(lifetime of the state ej i ¼ þ1j i) of NV centers is few milliseconds
at room temperature and even much longer at lower tempera-
tures30. The Λ transition can be realized with the spin non-
conserving transition31 as shown in Supplementary Fig. 1 and
Supplementary Note 2. After the transduction, the information of
the single-photon pulse is written in the ej i state of the absorber.

Amplification is essential to trigger a giant response, since the
signal stored in the defect (absorber) after the transduction is
usually an extremely weak quantum signal. In our quantum
system, the amplifier consists of a large number of interacting
ancilla qubits. An important principle is effective engineering of
the absorber–amplifier interaction to guarantee that the absorbed
energy is transferred to the readout channel to trigger the QPT. In
our model, the coupling between the absorber and the amplifier is
engineered in x-direction

Ĥint ¼ Bx ej i eh j
XN
j¼1

σ̂x
j : (1)

Due to the large zero-field splitting Δgs ≈ 2.87 GHz between the
NV ground spin states 0j i and ± 1j i, the coupling to the
surrounding spins will not change the NV spin population. Then,
the dispersive interaction in Eq. (1) is realized as explained in
Supplementary Note 1. This dispersive coupling with strength Bx
acts an effective magnetic field for the amplifier qubits32. As
shown in the following, the defect functions as a control of the
QPT in the amplifier. More importantly, the dispersive coupling
avoids additional decoherence of the amplifier induced by the
single-photon pulse. We note that this Λ-transition transduction
framework can also be generalized to a cold-atom or trapped-ion
system by employing a specific atom/molecule, which has
permanent dipole in the state ej i.
In our proposal, the amplification is realized by exploiting the

giant sensitivity of the first-order QPT. With the mean-field theory,
we predicted a universal first-order QPT in interacting-qubit
systems23

ĤAm ¼ 1
2
ϵ
XN
j¼1

σ̂z
j �

1
n

X
hi < ji

ðJxσ̂x
i σ̂

x
j þ Jyσ̂

y
i σ̂

y
j Þ; (2)

Table 1. Contrast of three fundamental classes of quantum resources.

Conceptual basis Quantum entanglement/squeezing Quantum criticality Giant quantum susceptibility

Quantum resource Based on GHZ25 or squeezed spin
states24

Based on second-order (continuous)
quantum phase transition5,6

Based on first-order (discontinuous)
quantum phase transition

Physical mechanism Heisenberg uncertainty principle Orthogonality of the ground states of two
neighboring quantum phases

Discontinuous change in the long-
range spin order

Sensitivity scaling High phase sensitivity ∂P/∂ϕ∝N
(slope of the population P with
respect to the phase ϕ)19

High fidelity susceptibility ∂L=∂λ / N (slope
of the Loschmidt echo
L ¼ jhGðλÞjGðλþ δλÞij)

Giant quantum susceptibility ∂∣M∣/
∂λ∝N (slope of the spontaneous
magnetization ∣M∣)

Number of
measurements

Phase interference based and
repetitive measurements required19

Repetitive measurements of the
decoherence of an ancillary qubit5

Single-shot measurement; Non-
adiabatic transitions dominate
dynamics

Fig. 1 Computational model of single-photon pulse interacting with N > 100 qubit system. The interacting spin qubits at the bottom,
which can function as a quantum amplifier, are critically biased close to the first-order quantum phase transition (QPT) point. The three states
in the absorber on the top form a Λ-structure. After absorption of a single-photon pulse, the absorber is excited from the ground state gj i and
finally relaxes to the meta-stable state ej i. After the gj i ! ej i transition, the absorber exerts an effective magnetic field on the amplifier qubits.
This magnetic field triggers a QPT in the qubits underneath. Initially, the spin qubits are polarized in the yz-plane (a). After the phase transition,
the spins rotate to the xz-plane (b).
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where ϵ is the energy splitting of the qubits along z direction, Jx
and Jy are the strengths of the ferromagnetic qubit-qubit
couplings in x- and y-direction respectively, and σ̂α

j ðα ¼ x; y; zÞ
are the Pauli matrices of the jth qubit. The summation 〈i < j〉 runs
over n coupled neighbors. For the 1-dimensional Ising chain with
n= 1, the short-range coupling only exists between the nearest
neighbors33. For the Lipkin–Meshkov–Glick (LMG) model with n=
N− 1 (N the total qubit number)34, all the qubits are coupled with
each other.
The amplifier qubits has two ferromagnetic (FM) phases: FM-X

and FM-Y with long-range spin order in x- and y-direction. The
competition between these two FM phases results in the first-
order QPT, which exhibits giant sensitivity for weak signal
detection23. In Fig. 2a, we present the schematic of the first-
order QPT boundary (the red line) in the phase diagram. The
quantum phases and the corresponding QPTs can be character-
ized by two magnetic order parameters

ζx � Ŝ
2
x

D E
0
=N2 and ζy � Ŝ

2
y

D E
0
=N2; (3)

which describe the magnetic fluctuations in the xy-plane. Here,
Ŝα ¼

P
jσ̂

α
j =2 are the collective qubit operators and 〈⋯ 〉0 means

average on the ground-state of the amplifier. The second-order
QPTs in interacting-qubit systems have been extensively demon-
strated in recent experiments1–3. Specifically, the second-order
QPT in the LMG model (with long-range qubit-qubit coupling only
in x-axis) has also been demonstrated in a recent experiment
with 16 dysprosium atoms35 and strontium atomic ensemble (N ~
105− 106) in an optical cavity 36. We suggest that by adding an
additional laser to induce the long-range coupling in y-direction,
the first-order QPT due to the competition between the two FM
phases can also be observed. This can provide a promising
platform to build a single-photon detector utilizing first-order QPT
in the LMG model. In the following, we numerically demonstrate
the single-photon pulse induced giant response near the first-
order QPT of the LMG model, which occurs at Jx= Jy > ϵ/223.
The amplification and single-shot readout of the quantum

information stored in the state ej i is realized by exploiting the
first-order QPT in the amplifier. Initially, the qubit-qubit coupling Jx
is pre-biased slightly below the phase transition point Jx,c≡ Jy [see
the red star in Fig. 2a] and the amplifier is initialized in its ground
state of the FM-Y phase. After absorption of a single-photon pulse,
the absorber is flipped to the state ej i with probability Pe(t) (see
Supplemental Figs. 1b and 2). Thus, the additional effective

magnetic field experienced by the amplifier qubits is Bx × Pe(t). The
initial critical bias guarantees that the small magnetic field
perturbation Bx × Pe(t) from the absorber can trigger a QPT and
leads to efficient amplification.
There are two ways to read out the amplified signal in practice.

One is to directly measure the spontaneous magnetization
ffiffiffiffiffi
ζx

p
of

the amplifier in x-direction, which increases from an extremely
small value to a finite value after the collective rotation of the
qubits. Another option is to couple the amplifier qubit with a
cavity as proposed in our previous works11,23. The energy
prestored in the qubits is transferred to the cavity mode
generating macroscopic excitations after the QPT. The photons
leak out from cavity can be directly measured with classical
photodetectors.
Dynamical amplification via quantum phase transition
To characterize the dynamic giant response, we define a time-

dependent quantum gain of the amplifier as

GðtÞ ¼ hŜ2xðtÞi=hŜ
2
xðt0Þi: (4)

We contrast the time-dependent quantum gain for the cases of
critical bias (the red-solid curve) and non-critical bias (the blue
dotted curve) in Fig. 2b. It is clearly seen that the giant response
(corresponding to an efficient amplification) can only be obtained
if the system is optimally biased close to the phase transition
point11 (please refer to Supplementary Note 3 and Supplementary
Fig. 3a for more details). For fixed weak perturbation Bx= 0.01ϵ,
there exist an optimal bias coupling strength Jx ≈ 0.675ϵ. We also
note that for the critical bias case, the amplifier qubits finally
evolve to an excited state in the FM-X phase with macroscopic
qubits polarized in xz-plane as shown in following.
To reveal the intrinsic change within the amplifier, we contrast

the time-dependent spin Q-function of the amplifier for different
biases in Fig. 3. The first row a–d and the second row e–h
correspond to critical and non-critical bias cases, respectively. In
both cases, the amplifier starts from the FM-Y phase with spin
qubits polarized in the yz-plane. The two arms of the Q-function in
the yz-plane at time t0=−5/ϵ (the time before the absorption of
the pulse) correspond to the two degenerate ground states of the
FM-Y phase23. For the first row, the incident single-photon pulse
triggers a phase transition to the FM-X phase. The qubits rotate
90° to the xz-plane at time t0= 18/ϵ in Fig. 3d. This reveals the
dynamic change in the long-range spin order within the amplifier
and clearly shows the signature of the detection event. In contrast,

Fig. 2 Single-photon pulse induced first-order quantum phase transition (QPT). a The phase diagram and the initial bias of the amplifier.
b After absorption of a single-photon pulse, the absorber is flipped to the state ej i, on which the absorber exerts a weak magnetic field Bx ×
Pe(t) (Pe(t) the population of the state ej i) on the amplifier with N= 400 qubits. Only if the the amplifier is optically biased around the critical
point Jx,c≡ Jy, the time varying field can trigger a first-order QPT to obtain a large quantum gain. Here, the qubit-qubit coupling in the y-
direction is fixed at Jy= 0.7 and the absorber–amplifier coupling Bx= 0.01ϵ.
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no macroscopic spin order change occurs when the amplifier is
biased far from the phase transition point. The polarization of the
spin qubits marginally varies with time in Fig. 3e–h.
Our simulation of the amplifier dynamics has ignored the

decoherence of the interacting qubits that may degrade the giant
response in practical processes. However, the amplification has
completed within the time ϵTAm ≈ 15 (see Supplementary Fig. 3b),
which is usually much shorter than the decoherence time of the
qubits. If the amplifier is composed of electron spins with typical
energy splitting ϵ ~ 1 GHz and coherence time T�

2 � 1 μs37, we
have ϵT�

2 � 1000 � ϵTAm. For nuclear spins with typical energy
splitting 1 MHz and coherence time T�

2 � 1 ms at room
temperature and longer than 10 s at low temperature38, the
decoherence time is still much longer than the amplification time.
With dynamical decoupling techniques39,40, the coherence time of
the spins can be further prolonged 2–3 orders of magnitude41–43,
which is far more than the required time for amplification. The
dipole–dipole interaction between the NV center and nuclear
spins at the typical distance 1 nm is around 20 kHz. This effective
magnetic field (Bx/ϵ ≈ 0.02) is large enough to trigger the QPT.

DISCUSSION
The giant response of the interacting qubits fundamentally
originates from the singular behaviors of the system at the phase
transition point. We now show the singular scalings of the system.
We also notice that in most cases, it is difficult for weak input
signals to change the coupling strength within the amplifier11.
Here, we show that a weak magnetic field perturbation can also
break the balance of the two FM phase at the phase boundary Jx
= Jy to trigger the first-order QPT. This also lays the foundation of
the amplification mechanism as shown in the previous section. As
shown in the subgraph of Fig. 4a, the order parameter ζx (green-
dotted line) increases swiftly with the perturbation magnetic field
in x-direction and the other order parameter ζy (red-solid line)
drops. The sensitivity to the magnetic field is characterized by the
susceptibility of the spontaneous magnetization

χ ¼ d
ffiffiffiffiffi
ζx

p
dBx

����
Bx!0

/ jBxj�γ; (5)

which is symmetric on the two sides of the transition. Here,
singular exponent γ ≈ 1.525 is obtained via the numerical
calculation. The same susceptibility for the spontaneous magne-
tization

ffiffiffiffiffi
ζy

p
with respect to a magnetic field in y-axis can also be

obtained (data not shown). The susceptibility diverges linearly
with the qubit number χ ~ N as shown in Fig. 4b.

We emphasize that in first-order QPTs, a singularity occurs on
the higher-order magnetic correlation. This is fundamentally
different from the traditional thermodynamic phase transitions,
in which the diverging spatial correlation length ξ in the
microscopic correlator hðσ̂x

i � hσ̂x
i iÞðσ̂x

iþξ � hσ̂x
iþξiÞi leads to the

divergence of the magnetic susceptibility44. However, in the LMG
model, the qubits are all coupled with each other with
homogeneous strength and the qubits are indistinguishable.
Thus, we cannot define a simple correlation length ξ for the LMG
model. Alternatively, we define a higher-order correlation function

Cxxyy ¼ 1
2
hŜ2x Ŝ

2
y þ Ŝ

2
y Ŝ

2
xi0 � hŜ2xi0hŜ

2
yi0 / jBxj�~ν ; (6)

to characterize the macroscopic correlation between the magnetic
fluctuations in x- and y-axis.
The diverging Cxxyy in the subgraph of Fig. 5a shows the strong

negative correlation between Ŝ
2
x and Ŝ

2
y at the phase transition

point. The negative correlation reveals the fact that the order
parameter ζy decreases as the other one ζx increases. The
corresponding singular exponent is ~ν � 0:919 as shown by the
black fitting curve. In Supplementary Fig. 4, we show that this
exponent is universal for the LMG model, as it is independent on
the qubit number N as well as the position on the first-order QPT
boundary in Fig. 2. We note that ~ν is similar to the traditional
correlation length critical exponent44,45. We also show that the
lower-order correlation ð1=2ÞhŜxŜy þ ŜyŜxi0 � hŜxi0hŜyi0 shows no
singularity in Supplementary Note 4.

Fig. 4 Singular behavior in the susceptibility. a The susceptibility χ
diverges at the phase transition point Jx= Jy= 0.7ϵ. The subgraph
shows the abrupt changes in the order parameters in the first-order
quantum phase transition with qubit number N= 1000. b The
susceptibility χ near the phase transition point increases linearly
with the qubit number N. Here, the perturbation magnetic field is
set as Bx= 10−5ϵ.

Fig. 3 Dynamics of the amplifier. The spin Q-function characterizes the polarization distribution of the amplifiers qubits. The first rows (a–d)
shows the dynamic change in the Q-function with bias Jx= 0.675ϵ very close to the phase transition point Jx,c= Jy= 0.7ϵ. The second row (e–
h) is for the case with Jx= 0.5ϵ far from Jx,c. The curves underneath are the contour projections of the corresponding Q-functions in xy-plane.
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Another typical character of QPTs is that the energy gap Δ
vanishes at the phase transition point as shown in Fig. 5b. The
corresponding exponent is given by Δ ~ ∣Bx∣1/2, which is same as
the second-order QPT in LMG model46–48. The previous study on
the size scaling for the LMG model shows that energy gap Δ also
vanishes with the increasing qubit number Δ ~ 1/N at the phase
transition point49,50.
Our work demonstrates the single-photon pulse induced giant

response near a first-order QPT point. Our theoretical proposal can
be directly implemented in current QPT simulators1–3. We note
that for microscopic systems, zero temperature generally implies
preparing a system in a pure quantum (ground) state. We note,
however, that in principle strongly interacting engineered qubits
can show QPT behavior at finite temperature environments if the
phase transition completes before the decoherence of the system
occurs.
Our work paves a way for single-photon detection using

quantum phase transition. This defect-controlled-QPT system is
based on the fact that the first-order QPT in interaction qubit
systems can be induced by a weak in-plane magnetic field. Future
work will explore practical implementations on a circuit QED, cold
atom and ion trap systems.
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