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Abstract

We show that a single photon pulse incident on two interacting two-level atoms induces a transient
entanglement force between them. After absorption of a multi-mode Fock state pulse, the time-
dependent atomic interaction mediated by the vacuum fluctuations changes from the van der Waals
interaction to the resonant dipole—dipole interaction (RDDI). We explicitly show that the RDDI force
induced by the single photon pulse fundamentally arises from the two-body transient entanglement
between the atoms. This single photon pulse induced entanglement force can be continuously tuned
from being repulsive to attractive by varying the polarization of the pulse. We further demonstrate
that the entanglement force can be enhanced by more than three orders of magnitude if the atomic
interactions are mediated by graphene plasmons. These results demonstrate the potential of shaped
single photon pulses as a powerful tool to manipulate this entanglement force and also provides a new
approach to witness transient atom—atom entanglement.

1. Introduction

Single photon induced forces and torques correspond to the fundamental limit of optical linear momentum and
angular momentum exchange with atoms [1]. Their direct detection is an open challenge since state-of-the-art
quantum detectors are only sensitive to energy and arrival time of single photons [2]. Recent advances in
temporal shaping of single photon scattering from atoms has shed light on the role of the temporal waveform of
Fock states [3]. In light of these developments, it is an open question how single photon waveforms influence
dipole—dipole interactions between atoms. Of particular interest is the exploration whether single photon
shaped waveforms incident on interacting atoms can lead to experimentally observable transient effects.

During the last two decades, many techniques have been utilized to enhance the strength of the dipole—
dipole interaction and the corresponding force [4], such as utilizing micro-cavity [5-8], surface plasmons
[9-11], and hyperbolic materials [ 12]. Especially, the strong dipole—dipole interaction induced large energy shift
in highly excited atoms (e.g. Rydberg atoms) has been proposed as the mechanism for ‘Rydberg blockade’, which
provides a novel approach for quantum information processing [ 13, 14] and simulation of quantum phase
transition [15, 16]. However, single-photon pulse as a tool to manipulate the transient dipole—dipole force has
not been explored.

In this paper, we show the existence of a unique transient entanglement force between two neutral atoms
induced by a single photon pulse. With the help of our defined force operator, we explicitly show that the
resonant dipole—dipole interaction (RDDI) force fundamentally arises from two-body entanglement, which is
significantly different from the van der Waals force. Our theoretical framework combines quantum theories of
single-photon pulse scattering [ 17-20] and the macroscopic quantum electrodynamics approach of dipole—
dipole interaction [21-24]. We thus show that the quantum statistics of the incident (Fock-state versus
coherent-state) pulses lead to significant differences in the induced RDDI entanglement forces. After absorption
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Figure 1. Schematic of the single-photon pulse induced entanglement force detection. (a) Two atoms in free space. (b) Two atoms on
top of a graphene layer (z, is the height). These two atoms (the yellow spheres) are levitated by two separated optical tweezers. The
relative displacement between the two atomsis r = x, — x; = re,, which is along x-axis. The linearly polarized single photon pulse
propagates along y-direction, with polarization being parallel (||with = 0) or perpendicular (Lwith § = 7/2)to r. For two ground-
state atoms, the van der Waals force mediated by the vacuum fluctuations is extremely small (~ 10> N for r & 1 zm, far beyond the
state-of-art of the force sensitivity [32, 33]). After absorption of a single photon pulse, the atom—atom interaction changes to the RDDI
as shown in (c). The corresponding force is enhanced more than 10 orders to ~10~2' N. We emphasize that this RDDI force for atoms
onstates [IF) = (Jeg) =+ |eg)) /~/2 is an entanglement force, which is fundamentally different from the van der Waals force.

Single-Photon
Pulse

of a single photon pulse, the inter-atomic force changes from the extremely weak van der Waals force [4, 25, 26]
to the RDDI force [27, 28] with the amplitude enhanced by ~10 orders of magnitude.

We propose an experiment to detect this single photon pulse induced force with two levitated neutral atoms
(see figure 1), which are separated with distance r ~ 1 um by optical tweezers operating at the magic wavelength
[29-31]. Even with this enhancement, detection of such a weak transient RDDI force is still a difficult challenge.
Therefore, we we demonstrate that the single photon pulse induced RDDI force can be significantly enhanced by
placing the atoms near a graphene layer with the assistance of graphene-based surface-plasmon polaritons. By
investigating the full quantum dynamics of single-photon absorption, we predict optimum entanglement
generation mechanisms conducive to experimental inquiry. Finally, we argue that the proposed effect can be
differentiated from previously known dipolar interactions since the single photon pulse induced entanglement
force can be tuned from repulsive to attractive by tuning the polarization of the incident pulse.

2. Dipole—dipole interaction force operator

With the help of the Hellmann—Feynman theorem [34], we define a quantum operator to characterize the force
generated by the coherent part of the dipole—dipole interaction in appendix A

B = —%U(n = 3" B ) (n], 1)

where F,,,,(r) = —0 U,,,,(r)/0ris determined by the atom—atom interaction U(r) = > Unn (1) | m) (n]
induced by electromagnetic vacuum fluctuations [22, 35] and |m) € {|gg), |eg), |ge), |ee)} for a two-level-
atom pair. The dipole—dipole interaction force is always along the axis joining the two atoms. Our defined force
operator allows us directly to classify the dipole—dipole interaction force into two categories: (1) van der Waals
force between two atoms in a direct-product state, such as the force for two ground-state atoms

Faw = Fygglgg) (ggl; (2) RDDI force for entangled atoms, e.g.

Fropi(r) = Egge(r)leg) (gel + h.c.. )

We will show how to control this force with a single photon pulse later.
We emphasize that the latter RDDI force fundamentally arises from two-body entanglement [36]. The
eigenvectors of the force operator Frppi (1) are the two Bell states
%) = —=(leg) + Ige)), ©)
Np)
with eigenvalues £F,, ..(r). For a given two-atom state p(t), the absolute value of the RDDI force is proportional
to to the probability difference of the two-atom state on these two entangled states, i.e.
Frppi(r, 1) o< [{TFp@) [T — (U7]p(¢)|P™)]. This immediately reveals that, to maximize the RDDI force,
one needs to prepare the atom pair in one of these two entangled states. We also note that, the RDDI force
presents a readout of two-body entanglement. This entanglement force between transition dipoles is
fundamentally different from van der Waals force [26] and the force generated by the permanent dipole—dipole
interaction [21]. We emphasize that the maximum possible RDDI force (the eigenvalue of the force operator) is
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determined by the atom—atom distance r. However, the exact time-dependent envelope of the RDDI force in a
specific dynamical process is determined by the atomic two-body entanglement.

3. Dynamical entanglement force

The master equation method has been broadly applied to study the dipole—dipole interaction and entanglement
between neutral atoms [22, 35, 37-39]. We now incorporate the single photon pulse absorption dynamics with
the traditional master equation to show the time-dependent entanglement force induced by a single photon
pulse (see appendix F)

%b(t) = [Zatom + Zpump(t)]p(t)) 4

where p(t) = ppy(t) ® p(t)isan effective density matrix. We have introduced an extra qubit degree of freedom
ppn(?) to characterize the photon number degree (see more details in [19]). The initial value of p(t) is given by
p0) = by ® p(0), where Ipy is the two-dimensional identity matrixand p(0) = |gg) (gg|denotes the initial
state of the atom pair.

The quantum pumping from a single photon pulse is characterized by,

Lopump)p(t) = > [t €* — )87, pOF1 + hel, (5)
=12
where y;; = 7, is the spontaneous decay rate of the atoms in vacuum. The coefficient 7; characterizes the
pumping efficiency, which is determined by the effective scattering cross section of the jth atom. The wave-
packet amplitude of a Gaussian single photon pulse is given by

1/4
e = | 2| el - it )
2777'? 47} i

with center frequency w, and pulse length 7/[20]. The time that the center of the pulse arrives at the jth atom is
givenby t; = ko - x;j/wy (ko| = wo/c). Theabsorption of the pulse is characterized by the Pauli matrix 7 of the
extra qubit degree. The interatomic RDDI are included in the regular time-independent Lindblad superoperator
[22,35]

Batomb(t) = _ll Z WO&;—&]‘_ + E 61]6-1_‘—6-]_’ ﬁ(t)]
i=1,2 i

(7)
+ X 26 P05} — P67 — 8 plo,

ij

where wy is the energy splitting of the two-level atoms, and the energy shifts 6;; = Ul q(r)/ and decay rates 7;;
are given in appendix D.

Both the imaginary part (the cooperative decay rates y;, = ,;) and the real part (the energy shift 6, = 6,;)
of the RDDI are dependent on the polarization of the atomic dipoles 78 with respect to the relative displacement
vector r. As shown in figure 2(a), the cooperative decay rates decrease monotonously with atom—atom distance r
in the near region, begins to oscillate in the medium region, and vanishes in the far region. Note that, the sub-
indices | and | denote the cases when p; is parallel and perpendicular to 7, respectively. Although 71, and 15,1
behave differently, both of them converges to the spontaneous decay rate -y, in the near region and decrease to
zero in the far region (see the subplot in figure 2(a)). Rewriting the master equation (7) in the bright and dark
states basis, this will automatically give the superradiance and subradiance [40]. The coherent part of the RDDI
diverges in the near region. More importantly, 6,5 | and 0,5, usually have opposite signs, especially in the near
region. This lays the foundation to tune the RDDI force by tuning the polarization of the pulse as explained in the
following.

The time-dependent RDDI entanglement force, Frppi(r, t) = Tr[p (£) Frppi(r)], induced by asingle
photon pulse for different atom distance is displayed in figure 3. For a fixed inter-atomic distance, the RDDI
force increases after the pulse excites the atoms and decreases with time when atoms re-emit the photon. We can
also see the amplitude of the RDDI force oscillates with atom distance r, due to the oscillation in the matrix
elements Fy, .,(r) of the RDDI force operator. The van der Waals force has been neglected here as it is negligibly
small as shown in appendix C. The impulse force from the incident pulse is estimated to be
Fymp & 7i0g JcTy ~ 1072N with center frequency wy ~ 27 x 3.77 x 10'* Hzand pulse length 7, ~ 30 ns. But
this force is along y-axis, which is perpendicular to the inter-atomic force in x-direction and can be relieved by
the trapping force in y-axis. Thus, the only relevant force along the axis joining the two atoms is the RDDI
entanglement force.
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Figure 3. Single-photon pulse induced transient entanglement force between two Rb atoms (D1 transition from 5251/, — 5Py /2).
The force reaches its maximum when the photon absorption probability is largest. The magnitude of the RDDI force oscillates with
atom—atom distance around r ~ 1 gm. Here, the time is in the unit of 1 /7, (7, is spontaneous decay rate of the atom in free space).
Perpendicularly polarized pulse (_L) is selected and its pulse length is set as 977 = 0.63. The pumping efficiency is set as

n, = 1, = 1/+/2. The exact data of the Rb atom is given in table D1.

Quantum entanglement fundamentally determines the time-dependent RDDI force induced by a single
photon pulse. Here, we use the concurrence to quantitatively characterize the two-qubit entanglement [41]. As
shown in figure 4(a), for fixed atom—atom distance r = 1.2 yum, the concurrence C(t)(the dashed-pinkline) and
the RDDI force Frppi(?) (the solid-blue line), as well as the excitation probability of the first atom Py () (the
dotted-red line), reach their maxima simultaneously for homogeneous pumping case (1; = 7,). But for the local
pumping of the firstatom case with 7, = 1and 7, = 0 (see figure 4(b)), C(t) and Frppy(#) reach their peaks at
the time, which is later than the time when P} () reaches its maximum. Thus, it is the entanglement instead of
the total excitation probability that maximizes the RDDI force. We also see that there are two ways to generate
the quantum entanglement between the atoms: (1) homogeneous pumping to the symmetric state | U*) directly
by the single photon pulse; (2) local pumping of single atom to state | eg) and then the RDDI evolves the atoms to
entangled states. Here, we show that the first one is more efficient for entanglement generation. The total photon
absorption probability P, .,.(¢) for both homogeneous (P, () = 2P, (¢) in figure 4(a)) and local pumping cases
(P, 1or(t) = P1(¥) in figure 4(b)) are almost the same. But the entanglement and the RDDI entanglement force
under homogeneous pumping are much larger than that of local pumping case. This is because the projection of
the atomic state p(¢) on the entangled state | U ") under homogeneous pumping is much larger.

The existing theory [4, 21, 22, 35] can not describe the quantum pulse induced dipole—dipole interaction
force. Now, we show that the force induced by a Fock-state pulse is significantly different from the one induced
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Figure 4. The transient entangled force Frppi(#) (the solid-blue line), the concurrence C(¢) (the dashed-pink line), and the excitation
probability of the first atom P, (¢) (the dotted-red line) induced by single-photon pulse. (a) All the three quantities reach the maximum
at the same time in the homogeneous pumping case with pumping efficiency 7, = 7, = 1/+/2 and pulse length 7y, = 0.62. Thus,
the entanglement is generated by the single photon pulse. (b) The excitation probability P; (f) first reaches its maximum and then the
force and the concurrence reach their maximum in the local pumping case with 1, = 1,7, = 0,and 74y,/27m = 0.75. Thus, the two-
body entanglement is generated via the dipole—dipole interaction. Here, the atom—atom distance is fixed as r = 1.2 pum. In the
double-y-axis figure, Frppi(f) is associated with the left y-axis and both C(¢) and Py (t) are associated with the right y-axis.
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Figure 5. Comparison of the entanglement force induced by (a) Fock-state pulses and (b) coherent pulses. The Fock-state pulse
induced force decreases with photon number () for the fixed pulse length 74y, = 0.3, while coherent-state pulses induced force
increases with the mean photon number from 1 to 10. Here, the atom—atom distance is fixed at r = 1.2 umand 1, = n, = 1/2.

by a coherent-state pulse. As explained in [20], the absorption probability of Fock-state single photon pulse by a
two-level atom is much higher than that of coherent-state pulse. Thus, the corresponding force is larger as
shown by the blue lines in figure 5. However, there exists an optimal pulse length 7, to reach the largest
excitation probability of the atoms for Fock-state pulses [19]. For fixed pulse length 7y, = 0.3, the maximum
entanglement force decreases with photon number in figure 5(a), as the total excitation probability decreases
[19]. But the force induced by coherent pulse always increases with the mean photon number (see figure 5(b)). In
an experiment, larger entanglement force can be obtained by optimizing the pulse length to increase the atomic
excitation probability for given atomic transition frequency and dipole—dipole interaction strength as shown in
appendix F.
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Figure 6. (a) Single-photon pulse induced entanglement force between two atoms placed near a graphene-layer interface. Here, the
forces have been normalized by the eigenvalue of the force operator Fropi(r) in free space. (b) Eigen value of the force operator
Fropi(r) for two Rb atoms in free space as a function of atomic distance r. The induced RDDI forces Frpp; are different for parallel (||)
and perpendicular (L) polarizations of single-photon pulses, as shown by the solid-green (Fj) and dotted-blue (F ) curves. In the
subplot, we show the force Frppy with r = 0.8 yum (marked by the vertical dashed line) for different polarization angle (6§ with respect
to x-axis) of the pulse in xz-plane. This clearly shows the change in sign of the force from repulsive to attractive.

4. Near-field enhancement of the entanglement force

The entanglement force can be enhanced significantly by engineering the nanophotonic environment near the
atoms. As a practical illustration, we demonstrate this enhancement by placing the atoms near a graphene layer
as depicted in figure 1(b). The surface plasmon polaritons of graphene have been previously shown to allow
conventionally forbidden atomic transitions [42] in addition to enhancing other well-known physical effects
such as decay rate of emitters [43] and Forster energy transfer rate [44]. This enhancement fundamentally
originates from the strong light—matter interaction due to the large density of states of the surface plasmon
modes, i.e. the polaritons generated by the strong coupling between the electromagnetic field and the charge
excitations at a conductor surface [43]. Since the field is strongly confined at the surface, thus the corresponding
enhancement only occurs when the emitters are placed close to the surface.

Here, we show that the RDDI strength and the time-dependent entanglement force can be enhanced
significantly by placing the atoms near a graphene layer. As presented in appendix D, the RDDI strength can be

directly evaluated via the classical Green’s tensor G (X1, X,, w). In the presence of a planar surface, the Green

tensor in the upper half-space can always be split into two parts [45]: G (X}, X5, w) = Go(X1, X2, w) + Gr(Xy, X2,
w) corresponding to the contributions from the free space and the reflection by graphene, respectively. The free
space Green tensor has been analytically given in [46—48]. The reflection Green tensor can be obtained from the
optical conductivity of a graphene layer (see more details in appendix E). The in-plane optical conductivity of
graphene includes intra-band and inter-band contributions [43, 44, 49-51] 0 (W) = Ointra (W) + Cinter (W) With

ZeszT i
ntra = — log[2cosh(Er/2ks T)], 8
() = = log 2 cosh(Ee /2y T) (8)
and
e? 4i/xo >, H(x) — H(wa/Z)]
inter = —|H(w/2 dx 5 9
Ginter () 45[( /D + = j; R ©)

where 7 is the relaxation time in the Drude model, Ex is the graphene’s Fermi energy, T'is the temperature, and
the function

sinh(x/kg T)
cosh(Eg /kgT) + cosh(x/ksT)"

H(x) = (10)
Figure 6(a) demonstrates the distance dependence of the entanglement force. For atomic transition
frequency close to graphene surface plasmon polaritons (exact data provided in appendix E), the enhancement
factor is larger than 1000 at atom-surface distance z, = 10 nm (red curve). When the two atoms are very close to
the graphene layer, the RDDI is primarily mediated by the surface plasmon polaritons in the graphene layer
instead of the vacuum fluctuations. The large density of states of surface polaritons enhances the strength of
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Figure C1. The matrix element of the dipole—dipole force operator for two Rb atoms. The dashed-pink curve denotes the van der
Waals force Fygyy ~ Fyq g which decreases with the atom—atom distance with scaling ~1/+” (marked by the thin black line) in the near
region and ~1/7° in the far region. The eigen value of the RDDI force operator Frppy is displayed with the dotted-blue line (parallelly
polarized atoms ||) and the solid green line (perpendicularly polarized atoms L ). The RDDI force decrease with ~1/r* (marked by the

thin black lines) in the near region and oscillates in the far region. The data of the two Rb atoms are given in table D1.

RDDI by orders of magnitude. While the graphene-based surface plasmon polaritons occur in the terahertz to
near-infrared band [43, 49], similar enhancement at optical frequencies are feasible with other plasmonic
materials such as gold and silver [52].

5. Precise control of the entanglement force

Now, we show single photon pulse as a novel tool to precisely control the atomic force: (1) a more than ten
orders of dipole—dipole interaction force amplitude change can be induced by a single photon pulse; (2) the
induced entanglement force can be continuously tuned from being repulsive to attractive by varying the
polarization of the pulse. For relevant inter-atomic separations (r ~ 1 pm), the van der Waals force is around
~5 x 1077 N (see figure C1), which is far beyond the state-of-art force sensitivity. As the van der Waals force
arises from higher-order process, thus it is much weaker than the RDDI force. After absorption of a single
photon pulse, the RDDI force dominates with a greatly enhanced amplitude ~10~** N. This force can be further
enhanced upto 10~ N with surface plasmons-plaritons. Using phase-coherent Doppler velocimetry, force
sensitivity of ~10~2*N/+/Hz can be approached in trapped ion systems [32]. In a Mach—Zehnder-type
interferometer with a free fall cesium atom from an optical tweezer, a force of magnitude 3.2 x 10" N has
been measured in an experiment [33]. Therefore, we are confident that that the transient entanglement force
induced by a single-photon pulse can also be detected in the near future.

For atomic transition between states connected by linearly polarized light, the direction of the corresponding
transition dipole is determined by the polarization of the incident pulse. As shown in figure 6(b), both the forces
induced by parallelly (||) and perpendicularly (L) polarized pulses oscillate with the atomic distance around
r ~ 1 pym. But these two forces have a phase shift and usually have opposite signs (especially in the near region
r < 0.5 pm). Thus, we can control the force to be repulsive or attractive by changing only the polarization of the
pulse. More importantly, we can continuously tune the value of the RDDI force via tuning the pulse polarization
angle 0 in xz-plane with fixed atom—atom distance (r) (see the subplot).

Conclusion and discussion

We reveals the essential role of the two-body entanglement in the RDDI force. We utilize a time-dependent
theoretical framework to study the transient entanglement force between two neutral atoms induced by a
quantum pulse. We also show that this entanglement force can be significantly enhanced by engineering their
nano-photonic environment and precisely controlled by tuning the polarization of the incident pulse.

Looking ahead, our work provides a natural platform to investigate photoassociation in chemical reactions
and bioprocesses [31]. By generalizing the force operator to multi-atom case, we can also study the role of the
many-body entanglement in the collective force of neutral atom ensemble [20, 53]. The photon absorption
probability and atom—atom entanglement can be enhanced by tailoring the shape and the time-frequency
correlation of photon pulses [20].
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Appendix A. Dipole—dipole interaction force operator

According to the Hellmann—Feynman theorem [34], we perform the derivation to the secular equation with
respect to the atom—atom separation r

Hin) = (Z Hlk|l><k|)|n> = > Hyll) (A1)
I

l

to obtain
0 ~ ~ |l 0 0 0
“h | Ln) = ey & 7 1) < o il A § A2
(3r )ln)—i— 3rn> Zl:[(@r l)|>+ : or >] &.2)
Multiply both side with (|, we have
0 0 0 0
—H = —H,, H;, —1) — Hy{l| =—n) | A3
(] (8r )|n> or + ;[ in{m] 8r> i 0rn>] (&-3)

In most case, due to the non-adiabatic transition terms in the square brackets, there does not exist a well defined
force operator for a microscopic system, such as the exchanging interaction in a condensed-matter lattice. But in
our case, the distance between the two atoms is much larger than the size the the atoms. Thus, the atomic wave
function is not dependent on the relative distance r and the second term at the right-hand side disappears (i.e.
(1on/0r) = 0).

In the atomic Hamiltonian, only the dipole—dipole interaction part
U(1) = Upn(r)|m) (nl, (A4)

depends on the inter-atomic distance r. As the corresponding force is always along the co-axis line, we can define
ascalar operator for this force as

F(r) = —ﬁFI: —Z[QUmn(r)]|m><n|. (A.5)
or Lor

We note that this force operator only works for weak atom-field coupling case. If the two atoms strongly
coupled to a resonant cavity field, one can not eliminate the degree of the cavity mode to obtain an effective
interaction Hamiltonian as shown in equation (A.4). In this case, the inter-atomic force is not only dependent on
atom-—atom separation, but also the position of each atom [54]. More important, the magnitude of the forces
experienced by the two atoms can be different, which violates Newton’s third law for a macroscopic body. We do
not consider this case in this paper.

Different elements in the operator F (r) correspond to different virtual processes generated forces. We
emphasize that only the anti-diagonal elements of the two-body interaction in (A.4) can be mediated by second-
order processes [21] and all the other terms result mainly from fourth order processes. Thus, the corresponding
forces are weak. In this paper, we only focus on two forces. The first one is the van der Waals (vdW) force
between two ground-state atoms Fyqw 0¢ Fgg oo(r), which mainly arises from fourth-order process [21, 23] and
usually is extremely small. An incident single-photon pulse can pump the atom pair to an entangled state. In this
case, the interaction changes to the RDDI, which plays the key role in energy transfer between different
molecules in chemical and biological processes. As the RDDI is mediated by second-order processes, the
corresponding force Frppy ~ Fe,eo(r) between the two atoms will be greatly enhanced. In the following, we
present the approach to calculate the elements of U (r) and F ().

Appendix B. Model Hamiltonian for atom-field interaction

The Hamiltonian of the total system is given by

H=H+ > Huij+ > Harjs (B.1)
=12 j
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where the Hamiltonian of the field modes in an arbitrary linear (non-magnetic) media is given by [46, 55]

A= [dx j; dwrwt’ (%, w) - fx, w), (B.2)
and the ladder operators of the eigen modes satisfy the commutation relations
[, 06 @), 3 &, )] = busd(x = X)b(w — W), 0, =%y, 2 (B.3)
and
£, W)y 50, )] = [ (% w), 6, )] = 0. (B.4)
The Hamiltonian of the two atoms is
Hyj = /iw, 0767, (B.5)

where w, ;is the energy splitting of the jthatom and 6;" = (57)" = |ej) ( &l is the Puali matrix. There are two
forms of Hamiltonian to describe the interaction between the atoms and the electromagnetic field. One is the
minimum coupling and the other one is the multipolar coupling [21]. The difference and relation between these
two forms of interaction can be found in [21, 56]. Here, we use the multiploar interaction Hamiltonian

Hapj = — (1,067 + 1 ,07) - E(x)), (B.6)

where p; , is the electric dipole transition element of the jth atom. In the following, for simplicity, we consider
two identical atom case Hieg = Hjog = K = dye;.
The electric field operator can be expanded with the eigen modes of the field as

Bx) = fo Y dwlBx w) + B w)l, (B.7)
where
Bx, w) = f ExGx, ¥, w) - K, W), (B.8)
Bx, w) = f ExF, w0 - G (x ¥, w), (B.9)
G x ¥, w) = G, %, —w). (B.10)

The function G (x, x/, w) is the classical Green tensor obeying the equation
2 — >
[V x V x —w—zs(x, w)]G(X, X, w)=T6(x—x). (B.11)
c

Here, we assume that the media is a non-magnetic material with constant permeability 14y = 1 and the frequency
dependent complex dielectric constant £(x, w). The Green tensor has the properties

3k —
G (x,¥,w) =G, X, —w"), (B.12)
—T —
G (x,¥,w) =GX, x, w), (B.13)
5 — Ed /Z/IJ’() —
f PxG(xp, %, )G (Xpy X, @) = 002 Tm G (% X0, w). (B.14)
T

We will show that both the van der Waals interaction and the RDDI can be easily obtained with the Green
tensor.

Appendix C. van der Waals interaction

The van der Waals interaction between two atoms has between well studied. A detailed calculation of the
coherent van der Waals interaction in free space is presented in [21]. Here, we only present the more general
form of van der Waals interaction between two identical atoms obtained by Safari and his collaborators [23]

2 4
2:“() foo du wa,lwa,Zu
0 [

[, - G(xpy X, i1) - T2 (C.1)
i Dt W, L) TR

Ugg,ge (1) = —

The incoherent part of van der Waals interaction has been neglected, as it is usually negligible small
compared to the spontaneous decay rate of the atoms.
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Table D1. The data of the *>Rb atom used in this paper coming from [57]. We note that the spontaneous decay rate can be obtained directly
from equation (D.7) with wy and dy.

#Rb Transition frequency wy Wave length

D1 (5212 — 52P,2) 27 x 3.77 x 10" Hz 794.98 nm
Transition dipole element d, Spontaneous decay rate 7, Life time o = 1/,
2.54 x 10°*Cm 27 x 5.75 x 10°Hz 27.68 x 10°s

C.1. Free-space case

In this subsection, we recover the well known van der Waals force in free space. It is easy to find that if we let
r =X, — x; = (r,0,0), only the diagonal elements of the free space Green tensor are non-zero [46, 47]

2

G, X1, w) = ———(1 — i=D)eler/e, (C2)
2mwr3 c
2 2.2
G (%, X}, W) = 3 ¢ 5 3[1 — iwr/c — %]ew/c. (C.3)
TWr c

Here, the sub-indices ||and L denote parallel and perpendicular to r, respectively.

As the ground-state atoms can be excited by arbitrarily polarized virtual photons. Thus, to calculate the van
der Waals interaction, we need average out the polarization angle by taking the spherically symmetric
polarizability tensor (see equation (49) in [23]). Finally, the van der Waals interaction between two ground-state
atom is given by

24155
3/

o0 2 4 — —
Upe (1) = — J; du— 0 TH[G (x1, X, 1) - G (300 X, 1), (C.4)

(wi + %)
Using the method presented in [21] (see chapters 7.5 and 7.6), we can verify that:

1/r% ur <1

. C.5
1/r7, ur>1 (€.5)

Ugg,ge (1) ~ {
Thus, the corresponding force Fyqw(r) will be of scale ~1/r” in the near region and ~1/7* in the far region. As
shown by the pink curve in figure C1, the van der Waals force F,q(r) deviate from the line 1/ (the thin black

line) slightly in the far region. We list the data of the Rb atoms in table D1, which have been utilized to generate
figure S3.

Appendix D. Master-equation method to calculate the RDDI
In this section, we calculate the RDDI strength via the Lindblad form master equation for a two-level-atom pair
%p(t) - fi[z]. wob B + X, 60767, p(t)]
+ 5, 51267005} — p(50] — 58 (0], (D.1)

where the decay rates are given by

2wk hg 2wk <
Vi = Mui - Im G (x;, xj, wo) - ;= P SZ w; - Im G (x5, xj, wo) - K (D.2)
0
and the RDDI energy
7 < pi - ImG(xj Xjp w) - py py - Im G (X, X, W) -
0 = Lal) f dww? x [ = v L i ! (D.3)
T Jo Wy — w w + wy
wé =
= - M - ReG(Xi’ X WO) . N] = eg,ge(r)/ﬁ) (D4)

fi€0C2

can also be obtained with Heisenberg equations [24]°.
This master equation can also be found in [22, 35, 39]. We present the details of the derivation in the
supplementary (see footnote 3). For atomic states connected by linearly polarized light, the direction of the

? See supplemental material at stacks.iop.org/NJP/22/023037 /mmedia for information about deriving the master equation and calculating
the RDDI with Heisenberg equations.
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transition dipoles e; are determined by the polarization of the incident pulse. This makes it possible to precisely
control the RDDI force by tuning the polarization of the pulse as shown in the main text.

D.1.RDDI force in free space
In this subsection, we calculate the RDDI force in free space. It is straightforward to verify that, for the free space
single point Green’s function, the real part diverges, but the imaginary part does not

2
Im Gy(xy, X, w) = lim Im (1 i )ew/c = L, (D.5)
r—0 2mwrr? c 67mc
w
Im G, (x1, X}, w) = a (D.6)

Then, we can obtain the well known spontaneous decay rate of an atoms in free space

2w < widy
- ImG(xj, X4, wo) - @ =
Jigoc? Hi b X ) By 3wy’

M= Y22 = = Yo (D.7)
We will take vy = 1 as the unit of frequency and 1/, as the unit of time in this paper. As shown in the next
section, both the coherent and incoherent dipole—dipole interaction can be greatly enhanced by engineering the
electromagnetic environment to change the Green tensor.

Substitute the free space Green’s tensor (C.2) and (C.3) back to the incoherent part (D.2) and coherent part
(D.4) of the RDDI, we can obtain the corresponding cooperative decay rates and the energy shifts of the atoms in
free space

3 1
M| = 570[ Fary ——sin(kgr) + —— (kor)2 cos(kor) + ko—rsm(kor)] (D.8)
=3 ;sin(k r) — ;cos(k r) (D.9)
V12,1 Yo (kor)? 0 (kor)? o?) | .
and
6 Sﬁ ! ——cos(kgr) + —— ! sin(kor) |, (D.10)
= Kor? T ke '
6 —ﬁ ! ———cos(kor) + ——sin(kyr) — Lcos(k r (D.11)
12,1 Yo (kor )3 or (ko )2 0 kor 0 .
whereky, = wy/c.
The matrix element of the force operator ﬁRDDI are given by
0
Frppr,|(r) = —5512,\\
= fiﬁ ko cos(kor) — 0 _sin(kor) + ko cos(kor) (D.12)
27 oryt T ey T T Gy ) '
and
0
Frppr, 1 (1) = ——612,1
or
3 ko 2k 3ko . 1
= —57 [(k v cos(kor) — or)? cos(kor) + ory sin(kor) — ?cos(kor)]. (D.13)

The numerical simulation of the forces are displayed in figure C1. In the near region, the RDDI force decreases
with 1/7*. In the far region, Frppy, | decreases with 1/ r* (green solid line) and Fyppy, | vanishes with scaling 1/r
(blue dotted line).

Appendix E. Dipole—dipole force near planar interface

As shown in previous sections, the Green tensor plays the key role in evaluation of the dipole—dipole interaction
as well as the corresponding force. In this section, we explain how to calculate the RDDI force near a planar
interface via the Green tensor.

11
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The Green tensor near a planar interface is given by [45]

= G 5 5 G 5 5 5 0: 0
G(xp, X, W) = HO(XI % @) + G, % @), 21> 0,2 > , (E.1)
Gr(x1, X2, W), 2>0,2<0

where Gj is the Green tensor in the free space, and Gy and Gy are the contribution due to the reflection and
transmission, respectively. The interface is at the plane z = 0 and the dipole source (the atoms) are placed above
the interface. Thus, all the reflected field has z > 0 and all the transmitted field hasz < 0.

The free-space dyadic Green Tensor in real space can be written as the sum of the following terms [58]

> «—FF «—IF «— NF
GO(Xla X2, w) = GO (Xla X2, UJ) + GO (Xl) X2, (.U) + G() (Xl) X2, w)) (EZ)

where the far-, intermediate-, and near-field terms are given by

GO (xp X, w) =1 — erer)4_ﬂ_relk”'ra (E.3)
—IF 1 .
Gy (x1, Xp, w) = i~ 3ee,) = Selker, (E4)

k1
and
— NF — 1 &
— ik,r

Go (X1, % ) = —(I = 3ere)-—55em, (E.5)

w

with e, = r/r. The Green tensor Go in (E 2)isthe exact same as the one given in equations (C 2)and (C.3).

S S d

Usually, the reflection Green tenor GR = Gy + GR and the transmission Green tensor GT = Gy + Gy (the
index sand p denote the s-polarized part and the p-polarized part, respectively) can only be obtained numerically
via [49],

S, lk e’} . > Sp
Gr (X1, X0 W) = f dgeket-rra g (E.6)
87 Jo
and
< S,p k [ee] i , —S,p
Gr (0, 3, ) = == [ dgettna-azing (E.7)
T 0

where k,, = w/cis the modular of the wave vector in free space, g, = ko/k., @ = x, ¥, zis the normalized
dimensionless wave vector, g = quz + qy2 the projection of § on the xy-plane, and qz/ = Je(w) — ¢* with the
relative permittivity of the outgoing media €(w). The kernals in the integrals are given by

A}g qrs.(q) IO + ]2 COS(2¢0) ]2 Sin(2¢0) 0

R = Lsin2¢y)  Jo — Jacos(2gy) 0> (E.8)
z 0 0 0
. q,Uo — hcosQey)]  —q,hsin(2¢y)  2ig), cos ¢,
Mg = —qr,(@)| —4.25i0Q2¢)  q,Uo + Jc0s2¢0)] 2igq);sin ¢ |, (E.9)
—2ig], cos ¢, —2ig], sin @, —2Joq* /1,
o qt.(q) Jo + J2cos(2¢,) J>sin(2¢,) 0
My = = JsinQ¢y)  Jo — hcos(2¢,) 0| (E.10)
1 0 0 0
and
@@ a,Uo — hcosQ2op)]  —q/hsinRey)  2iqq. )i cos ¢, /4,
M; = P —qZ/JZ sin(2¢,) qzl Uo + 2 cos(2¢)] Ziqqz/]l singg /q, | (E.11)
" 2igJ, cos ¢, 2igJ, sin ¢, 2Joq* /4,

Here, we have carried out the azimuth angle integral of g on the xy-plane and re-expressed the displacement r in
the cylinder coordinateasr = r e, + ze,withx = r, cosgpand y = r, sin ¢. In these M-matrices, J, denotes
Bessel function of nth order J[n, g k,r. ].

12
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The Fresnel reflection and transmission coefficients of graphene-layer interface are given by [43, 49]

!/
— — 2a(w
=l W (E.12)
q, +4q, + 2a(w)

_e(wg, — qZ/ + 2qzq2'oz(w)

= ) (E.13)
P g+ ewq, + 2q,4)0(w)
tt=1+r1, (E.14)
4,
ty = == Je) (A — 1), (E.15)
q2,z
where a(w) = 27mo (w) /egc is the dimensionless in-plane conductivity of the graphene. The optical
conductivity of a graphene layer can be split into intra-band and inter-band contributions
CT(W) = o—intra("‘}) + Jinter((f‘j) with [43’ 44]
) .
(@) = 28T 0012 cosh(Br /2ks T, (E.16)
mh* w+i/™m
e? iEp/7%
~ & iBe/h (E.17)
whw+1i/m
and
e? difow >, H(x) — H(/m/z)]
inerw:_Hmz‘i‘_f dx E.18
Tinter (W) 45[(/) —J, a2 (E.18)
62 i Jiw — ZEF
~ —|O(w — 2Eg) + —lo B 0> E.19
45[ ( F) - g o T 25 :||TO (E.19)
where 7 is the relaxation time in the Drude model, Er the graphene’s Fermi energy, and the function
Hx) = sinh(x/kgT) ‘ (E.20)
cosh(Eg/kgT) + cosh(x/kgT)
The RDDI strength for two atoms on top of a graphene layer is given by
w% =
(Jeg,ge(r) = _Qll‘i - ReG(x), X, wo) - 1. (E.21)

Then, the eigen value of the RDDI force operator on the state [U'") is obtained as F(r) = —0 Uyg(r)/01.In
figure E1, to show the enhancement in the RDDI force due to the graphene layer, we re-scale F(r) with the eigen
value Fy,cqum(ro) of the corresponding RDDI force operator in vacuum at 7y = 1.05 pm (denoted by the vertical
blackline). Comparing with the subplot, we see that more than three order enhancement in the force can be
obtained if the atoms are very close to the graphene layer (zy = 10 nm). We also see that this enhancement
decreases fast with the height of the atoms z, and vanishes for z, > 500 nm.

In the main text, the corresponding time-dependent entanglement force induced by a single photon pulse
has been displayed. The inter-atomic distance is setas r = 1.05 psm as marked by the dark vertical line in figure
El and the atom-interface distance is set as zy = 10, 20, 50 nm. The pulse length 7rhas been optimized to get the
maximum entanglement force as both the local spontaneous decay rate 7;;and the cooperative decay rates ;;
defined in equation (D.2) have also been greatly enhanced by the graphene layer.

Appendix F. Time-dependent Master equation for quantum pulse scattering processes

In this section, we study the dynamics of a two-level-atom pair. Different from the previous literatures, we
prepare the atom pair in the ground state |gg) instead of a single-excited state (e.g. |eg)). In 2012, Ben et al
derived a powerful time-dependent master equation for n-photon broadband pulse interacting with an arbitrary
quantum system. Here, we generalize this method to calculate the dynamical RDDI force.

The total master equation including the single-photon pumping process is given by

d 2 A -
Eﬁ(t) = [Latom + £pump]p(t)> (F.D)

where p(t) = ppy(t) ® p(t)isan effective density matrix and we have introduced an extra qubit degree of
freedom ppn(#) to characterize the photon number degree (see more details in [19]). The initial value of (¢) is
given by p(0) = Ion ® p(0), where Ipy is the two-dimensional identity matrix and p(0) = |gg) (gg¢|is the initial
state of the atom pair.
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Figure E1. The eigen value F | (r) of the RDDI force operator on state [¥ ) for two atoms on top of a graphene layer. Different curves
denote different atom-interface distance zy. In the subplot, we display the details of the curve for free-space case and the curves with

2o = 200 nmand z, = 500 nm. Here, the electric dipole moments (along z-direction) of the atoms are perpendicular to the relative
displacement r and F, (r) has been re-scaled by the eigen value Fy,,um(ro) of the corresponding RDDI force operator in vacuum at

ro = 1.05 pm (denoted by the vertical black line). The Fermi energy of the graphene is setas Ex = 1.0 eV and the relaxation time is
takenas 7p = 10~ 5. To obtained a large enhancement in the RDDI force, the energy splitting of the two-level atoms is set as

hwo = 0.7 eV different from the optical transition in Rb atoms as shown in previous section. The graphene layer is considered to lie on
an e(wp) = 2.5 substrate.

The the first term at right-hand side of equation (F.1) characterizes the free evolution of the atom pair
without the pumping

Laomp(t) = —i| 35 wodj oy + 3 6;6707, p(1)
J b (F.2)
1 PPN CiNAdtae Ao
+ 22 0il28 P08 — p05 55 — 557 pn).
ij
The second term characterizes the pumping of the single-photon pulse
Lpumpp = Z J%Wj{ﬁ(t — ) [Fprop G+l + &5 — t)6i- P -1} (F.3)
J

with Pauli matrices 7 characterizing the absorption of the single photon pulse. The parameter 7); characterizes
the pumping efficiency of the jth atom determined by its effective scattering cross section, t; = (x; - €,) /cis the
time of the center of the pulse arriving the jth atom, and

£(1) = dwé (w)e, (F.4)

1 f o0
V2w Jo
is the Fourier transform of the pulse spectrum function. For a Gaussian single photon pulse

Ew) = @ri/mYexp[—TH(w — wo)l, (F.5)

its wave packet amplitude in the time-space domain is given by,

1/4
1 t? .
£(t) = py— exp| ——5 — iwot | (F.6)
T

¥ 4Ty

In the main text, we assume the pulse propagates along the x-axis and arrives at the two atoms at the same
timet; = t, = 0. The pumping efficiency 7;in practice shoule be much smaller than 1 [18, 20], but its can be
enhanced by adding a mode converter [59]. In our simulation, we take 1, = 7, = 1/+/2 for the homogeneous
pumping caseand n; = 1,7, = 0 for the locally pumping case.

This effective master equation method can be straightforwardly generalized to n-photon Fock-state pulse
case by replacing the Pauli matrix 7. in equations (F.1)—(F.3) with
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Figure F1. Optimization of the dynamic force F, (the solid-blueline), concurrence C (the dashed-pink line), and the excitation

probability of the first atom P, (the dotted-red line) via tuning the pulse length 71 The atom—atom distance is fixed at = 1.2 um. (a)
Homogeneous pumping case. (b) Local pumping case.

0va 0 00 0 0 0 0 0
0 0 Yn—1 00 Jn 0 0 0 0

=10 o o .opE==|0 Vn—=1 0 . of (F.7)
0 0 01 0 0 .00
0 0 0 00 0 0 010

and replacingthe 2 x 2 identity matrix Iy withthe(n + 1) x (n + 1) identity matrix.

Actually, p(t) is not a real density matrix of a physical system, as Tr p(0) = n for n-photon Fock-state pulse.
Thus, only its projection on the specific subspace has physical meaning. The expected value of any atomic
operator O is given by

(0), = Tr[Op(1)] = Tr[p(t)(B © O)], (F.8)

where P is the projection operator of the extra qubit degree with the only non-zero element P;; = 1. Wealso
note that, to handle the coherent-state pulse case, we only need to replace all the photon related operators (i.e.
#., Ipn, and P) with the constant 1. This powerful time-dependent master equation (F.1) can be used to
uniformly study the quantum photon pulse scattering process.

We can also enhance the RDDI force by changing the pulse length 7¢to optimize the two-body entanglement
(see figure F1). Here, we see that, for homogeneous pumping case with 1, = 7, = 1/+/2, the optimal pulse
length maximizes the local excitation probability of the first atom P, the inter-atomic force Frppy, and the
concurrence C simultaneously (see figure F1(a)). But, for local pumping case with 7, = 1and 7, = 0, only the
pulse length optimizing C maximizes the RDDI force (see figure F1(b)). A shorter pulse optimizes the photon
absorption probability Py, but the entanglement and the force are suppressed due to the low entanglement
generation rate via the weak RDDI coupling and the fast spontaneous decay rates of the atoms. Thus, the
homogeneous pumping is a more efficient way to generate the entanglement force.
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