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Non-classical photonic spin texture of quantum
structured light
Li-Ping Yang 1,2 & Zubin Jacob 2✉

Classical structured light with controlled polarization and orbital angular momentum (OAM)

of electromagnetic waves has varied applications in optical trapping, bio-sensing, optical

communications and quantum simulations. However, quantum noise and photon statistics of

three-dimensional photonic angular momentum are relatively less explored. Here, we develop

a quantum framework and put forth the concept of quantum structured light for space-time

wavepackets at the single-photon level. Our work deals with three-dimensional angular

momentum observables for twisted quantum pulses beyond scalar-field theory as well as

the paraxial approximation. We show that the spin density generates modulated helical

texture and exhibits distinct photon statistics for Fock-state vs. coherent-state twisted pulses.

We introduce the quantum correlator of photon spin density to characterize nonlocal spin

noise providing a rigorous parallel with electronic spin noise. Our work can lead to quantum

spin-OAM physics in twisted single-photon pulses and opens explorations for phases of light

with long-range spin order.
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Structured single-photon pulses are an important frontier for
spin and orbital angular momentum (OAM)1–3. As a
quantum information carrier, single-photon pulses with

OAM have been achieved in the solid-state system with quantum
dots recently4 and have been exploited to construct a quantum
network with higher channel capacity5–10. The spin and OAM of
light have also attracted increasing attention in an emerging
research field—spin-orbit photonics11, which studies photon
spin-OAM transfer12–15 and light−matter angular momentum
exchange in the near-field region16–18 or transfer of optical OAM
to bounded electrons19 or photoelectrons12,20. Spin-1 quantiza-
tion is also the hallmark of photonic skyrmions and topological
photonic phases of matter21,22. A quantum field theory frame-
work is needed to study the non-classical properties such as 3D
noise of the angular momentum of light.

Existing theories of quantum light−matter interaction have
advanced over the last two decades to capture a plethora of
phenomena related to SAM and OAM of light23–34. Important
outstanding questions remain even within this large body of work
which is the focus of this manuscript, namely—photon statistics,
3D quantum spin and OAM vector density, 3D quantum noise in
SAM/OAM, and single-photon quantum states. Figure 1a shows
the well-known regime of twisted laser beams which contain an
enormous number of photons. At the single-photon level, both
existing semi-classical23,24 and approximate quantum theories
break down30,32. In the widely adopted state-space description of
single photons or entangled photons f l; sj ig with Stokes para-
meters and the Poincaré sphere28,33, the rich spatial texture of
spin and OAM vectors is ignored completely. Specifically,
important open questions remain on the full 3D projection of
photon spin and OAM at the quantum level beyond the scalar-
field theory and paraxial approximation. Heisenberg uncertainty
relations for photon angular momenta can affect quantum
metrology experiments which require a quantum theoretic fra-
mework. These Heisenberg uncertainty relations between differ-
ent photon OAM 3D components are the canonical quantum
characteristics of angular momentum. Similarly, for applications
such as secure quantum communication, twisted single-photon
pulses in the quantum limit with few photons (see Fig. 1b) are
required. In this technologically relevant limit, quantum statistics
of photons will reveal behavior significantly different from the
quasi-classical Poisson behavior exhibited by traditional OAM
laser beams. These fundamental, as well as technologically rele-
vant problems, require the definition of single-photon quantum
state along with OAM/SAM operators.

In this work, we present an important frontier for quantum
structured light involving twisted space−time wavepackets of
light. We first construct the wave function of a quantum twisted
pulse, as well as a twisted laser beam, from quantum field

theory35 instead of from the single-particle Schrödinger equation
in the first-quantization picture36–38. By exploiting the quantum
operators of the angular momenta of light39, we evaluate the
mean value, as well as the quantum uncertainty of the photon
spin operator vector. Apart from the well-established global
properties of polarization, we also investigate the quantum
properties of the photon spin density vector, i.e., the spin texture,
which is a function of space and time. We show that beyond the
paraxial approximation, the photon spin density of a Bessel
single-photon pulse can exhibit rich spatial texture. Our work
builds on previous important work in the field23–34. Our pro-
posed framework provides a powerful and versatile tool to engi-
neer the local photon spin and OAM densities of a quantum
structured light pulse, specifically for spatiotemporal optical
vortices40,41.

Non-local spin noise (i.e., spin density correlation) for elec-
trons is a fundamental signature of quantum phases of magnetic
condensed matter42, specifically in phases of matter such as
quantum spin liquids without magnetic order43. However, no
such quantum spin noise operator has been defined for photons
till date. Our theoretical formalism allows us to overcome this
challenge. Here, we introduce the quantum correlator of photonic
spin density to characterize the nonlocal spin noise in light. This
paves the way to explore exotic phases of light with long-range
spin order.

We emphasize that our work is immediately amenable to
experimental verification. We predict that for Bessel pulses with
large OAM, there will exist large fluctuations in the OAM along
orthogonal directions. This additional quantum noise can be
verified in metrology experiments even with OAM laser beams.
Recently, it was demonstrated that the nitrogen-vacancy (NV)
center in diamond can be used as a quantum sensor for detecting
the local spinning nature of photons44. The spin density of the
off-resonant optical beam can induce an effective static magnetic
field for the electron spin of the NV center, which itself is an
atomic-scale magnetometer working at room temperature. Ima-
ging of our discovered helical spin-density structure in this work
can be realized with the same technology in the near future.
Furthermore, our proposed non-local spin density correlation can
also be measured in compound measurements with two or
multiple NV centers.

Results and discussion
Quantum spin and orbital angular momenta of light. The full
quantum operator of photon spin is given by39

Ŝ ¼ 1
c

Z
d3xπ̂ðr; tÞ ´ Âðr; tÞ: ð1Þ

and OAM L̂ of light in the Lorenz gauge within quantum field

Fig. 1 Contrast between a traditional twisted beam and quantum pulse. Schematic of a traditional twisted beam a compared to the quantum twisted pulse
b put forth in this paper. The semi-classical theory only captures the mean orbital angular momentum (OAM) of a laser beam with large photon number.
However, the quantum effects of photon statistics, vectorial uncertainty relations, and non-local spin noise require a quantum-theoretical framework put
forth in this paper.
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theory. The operators Ŝ and L̂ obey the canonical commutation
relationships

½Ŝi; Ŝj� ¼ i_ϵijkŜk; ½L̂i; L̂j� ¼ i_ϵijkL̂k; ½L̂i; Ŝj� ¼ 0; ð2Þ
where ϵijk is the third-order Levi-Civita symbol. The longitudinal
and scalar photons play a significant role in both Ŝ and L̂.

However, only the SAM Ŝ
obs ¼ ε0

R
d3rÊ?ðr; tÞ ´ Â?ðr; tÞ and

OAM L̂
obs ¼ ε0

R
d3rÊ

j
?ðr; tÞðr ´∇ÞÂ

j
?ðr; tÞ carried by transver-

sely polarized photons are directly observable quantities even in
the presence of charges39. Note, Ê? and Â? are the transverse
part of the electric field and the vector potential, respectively.

Using the circularly polarized plane waves, we can expand the
observable photon spin and OAM operators as45–47 (please refer
to Supplementary Notes 1 and 2)

Ŝ
obs ¼ _

Z
d3k âyk;þâk;þ � âyk;�âk;�
h i

eðk; 3Þ; ð3Þ

L̂
obs ¼ �i_

Z
d3k ∑

λ¼±
âyk;λðk ´∇kÞâk;λ; ð4Þ

where e(k, 3)= k/∣k∣ is the unit vector and λ= ± denotes the left
circular polarization (LCP) and right circular polarization (RCP)
separately (see Supplementary Note 1). The ladder operators of
the plane wave with wave vector k and polarization λ satisfy the
bosonic commutation relation ½âk;λ; âyk0;λ0 � ¼ δðk � k0Þδλλ0 . The

photon helicity is given by Λ̂ ¼ _
R
d3k âyk;þâk;þ � âyk;�âk;�
h i

. We

emphasize that the spin and OAM are separately observable due
to the quantum commutation relations39

½Ŝobsi ; L̂
obs
j � ¼ 0: ð5Þ

To show the striking symmetry between the angular momen-
tum of photons and electrons, we define a field operator for light
in real space ψ̂ðrÞ ¼ ½ψ̂þðrÞ; ψ̂�ðrÞ�T , where

ψ̂λðrÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p Z
d3kâk;λe

ik�r : ð6Þ

For the source-free case, our defined field operator in the
Heisenberg picture satisfies the homogeneous wave equation

∇2 � 1
c2

∂2

∂t2

� �
ψ̂ðr; tÞ ¼ 0: ð7Þ

Now, we can re-express the OAM and helicity operators of light
in parallel to their electron counterparts

L̂
obs ¼

Z
d3rψ̂yðrÞðr ´ p̂Þψ̂ðrÞ; ð8Þ

and

Λ̂ ¼ _

Z
d3rψ̂yðrÞσ̂zψ̂ðrÞ ð9Þ

where p̂ ¼ �i_∇ is momentum operator and σ̂z ¼ diag½1;�1� is
the Pauli matrix. However, the similar expression for the spin

operator Ŝ
obs

can not be obtained in real space. The unit
polarization vector e(k, 3) in Eq. (3) for each plane wave is k-
dependent, i.e., dependent on its spatial momentum.

Quantum wave function of twisted light pulses. In previous

sections, we have shown that both Ŝ
obs

and L̂
obs

are vector
operators. However, in previous studies, usually only their pro-
jections on the propagating direction have been fully
studied23,24,34. Their mean value on the transverse plane and
more importantly, their quantum fluctuations have not been

investigated. On the other hand, the near-field techniques have
now been well developed. This makes it possible to measure and
engineer the angular-momentum density of light, which is a
vector function of space and time, in experiments. Thus, a fully
quantum theory beyond the paraxial approximation to explore all
classes of twisted pulses in a united framework is highly desirable.
Here, we present this powerful theoretical tool by generalizing the
quantum theory of continuous-mode field35,48 to the twisted-
pulse case.

We first define the single-photon wave-packet creation
operator for a twisted photon pulse

âyξλ ¼
Z

d3kξλðkÞâykλ; ð10Þ

as a coherent superposition of plane-wave modes. The pulse
shape and other quantum properties of the pulse are fully
determined by the spectral amplitude function (SAF) ξλ(k). In the
following, we denote the propagating direction of the pulse as the
z-axis and work in the cylindrical coordinate in k-space
k ¼ kzez þ ρkeρ ¼ ρk cosφkex þ ρk sinφkey þ kzez . Here, ρk is
the radial distance from the kz-axis, φk is the azimuth angle,
and e denotes the corresponding unit vector. The SAF of a twisted
pulse with deterministic OAM can be generally expressed as

ξλðkÞ ¼
1ffiffiffiffiffi
2π

p ηλðkz; ρkÞeimφk : ð11Þ

Usually, the amplitude ηλ(kz, ρk) is symmetric in the transverse
plane, i.e, it is independent on the azimuth angle φk. The phase
factor expðimφkÞ with an integer m will lead to the OAM of light
in z-direction of a single-photon pulse as shown in the following.

The SAF is required to satisfy the normalization conditionR
d3k ξλðkÞ
�� ��2 ¼ 1. This guarantees that âyξλ obey the bosonic

commutation relation

½âξλ; âyξλ� ¼ 1: ð12Þ
Then, the wave-packet creation operator âyξλ can be treated as a
normal ladder operator of a harmonic oscillator. Using this
commutation relation, we can construct the wave function of all
classes of quantum pulses in the standard way, such as the most
common n-photon Fock-state and coherent-state pulses35 (please
refer to Supplementary Note 3)

nξλ
�� � ¼ 1ffiffiffiffi

n!
p âyξλ

� �n
0j i; ð13Þ

and

αξλ
�� � ¼ exp αâyξλ �

1
2
�n

� �
0j i ¼ e��n=2 ∑

1

n¼0

αnffiffiffiffi
n!

p nξλ
�� �

; ð14Þ

where �n ¼ jαj2 is the mean photon number in the coherent-state
pulse. The wave function of a squeezed-state pulse, an entangled
two-photon pulse49, or an ultra-short spatiotemporal vortex
pulse40,41 can also be constructed similarly. Here, the polarization
of the pulse is fixed as one of the circular polarizations. However,
linearly or elliptically polarized quantum pulses can also be
constructed with the superposition of two circular polarization
ladder operators âξλ ðλ ¼ ±Þ. We also note that a twisted laser
beam can be characterized by a wave function with a very long
pulse length and a very large photon number. Thus, our method
also captures the cases of continuous OAM laser beams used
widely in experiments.

Without loss of generality, we only take the Bessel pulses as an
example to show the quantum properties of the spin and OAM of
twisted pulses. Other twisted pulses, such as a Bessel−Gaussian or
Laguerre−Gaussian pulse, can be treated similarly. The single-
frequency Bessel beam is the superposition of all plane waves on
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the cone with the same frequency ω= c∣k∣, kz, and polar angle
θk= θc as shown in Fig. 2a. Then, the SAF of a Bessel pulse with a
Gaussian envelope can be expressed ηλ(kz, ρk) as the product of
two Gaussian functions

ηλðkz; ρkÞ ¼
2σ2z
π

� �1=4

exp �σ2zðkz � kz;cÞ2
h i

´
2σ2ρ
πk2?;c

 !1=4

exp �σ2ρðρk � k?;cÞ2
h i

:

ð15Þ

The first Gaussian function with width 1/σz and center wave
vector kz,c characterizes the envelope of the pulse in the
propagating direction. The pulse length on z-axis in real space
is given by σz= cτp with τp the pulse length in time domain
(please refer to Supplementary Note 3). We show the energy
density of a Bessel pulse in Fig. 2b, c.

Distinct from previous works30,50, we do not add a delta
function [such as δ(θk− θc)] in the SAF to characterize its
distribution property in the xy-plane. This will cause a serious
issue that the wave functions of the quantum pulses cannot
be normalized, because ∫d3k∣ξλ(k)∣2∝ δ(θk− θc). Instead, we
utilize another Gaussian function with width 1/σρ and center
value k?;c ¼ kz;c tan θc. These two Gaussian functions should
have the same ratio between center wave-number and the width,
i.e. kz,cσz= k⊥,cσρ≡ C0. In the narrow bandwidth limit C0≫ 1,
our defined SAF is well normalized (please refer to Supplemen-
tary Note 3). We also note that in contrast to the Bessel-mode-
based method31 which only applies to Bessel beams, our
generalized plane-wave-based framework is amenable to unify
the theory of all classes of quantum pulses.

Quantum statistics of the photon spin. Traditionally, the
angular momentum carried by each photon in a twisted laser
beam has been calculated semi-classically via the ratio of angular
flux to the energy flux23,24 and only its projection on the pro-
pagating axis has been studied. Although the projection of the
photon spin and OAM of a non-paraxial beam on the transverse
plane has caused attention recently25–27,29,34, a systematic and
comprehensive investigation of the vector nature of the photon
spin and OAM is still missing. Specifically, the Heisenberg
uncertainty relation for photon OAM has never been investi-
gated. On the other hand, many researchers have also tried to
establish a quantum theory of the angular momentum of light in
the last two decades30–33,51. However, a fully quantum framework
to handle arbitrary quantum pulses beyond the paraxial
approximation has not been found.

We first calculate the mean value of the spin of a Fock-state
Bessel pulse with polarization λ and photon number n (please

refer to Supplementary Note 4),

nξλ
	 ��Ŝobs nξλ�� � ¼ _nλ 0; 0; cos θc


 �
: ð16Þ

Here, we see that the magnitude of the spin carried by each
circularly polarized photon is usually smaller than ℏ and
approaches to ℏ asymptotically in the paraxial limit (θc→ 0)26,30.
This is significantly different from the helicity, which is exactly ℏ.
If the SAF of a pulse is symmetric in the xy-plane, then the mean

value of the spin in the xy-plane vanishes, i.e., hŜobsx i ¼ hŜobsy i ¼ 0.
However, we show that the quantum fluctuations of photon spin
in the xy-plane are not zero. The standard derivations of the spin
of an n-photon Fock-state Bessel pulse are given by

ΔŜ
obs
x ¼ ΔŜ

obs
y ¼ _

ffiffiffiffiffiffiffiffi
n=2

p
sin θc
�� ��; ΔŜobsz ¼ 0: ð17Þ

This is significantly beyond the previous semi-classical
theory23,24,34, in which the quantum statistics of the photon spin
cannot be studied.

Similarly, we can evaluate the mean value of the spin of a
coherent-state Bessel pulse with polarization λ and photon
number �n ¼ jαj2,

αξλ
	 ��Ŝobs αξλ�� � ¼ _�nλ 0; 0; cos θc


 �
: ð18Þ

Here, we see that the average spin carried by each photon is still
_ cos θc and the spin’s projection on xy-plane also vanishes.
However, the quantum statistics of the photon spin for a
coherent-state pulse is significantly different from that of a Fock-
state pulse,

ΔŜ
obs
x ¼ ΔŜ

obs
y ¼ _

ffiffiffiffiffiffiffiffi
�n=2

p
sin θc
�� ��; ΔŜobsz ¼ �n_ cos θc

�� ��: ð19Þ
The Poisson statistics of a coherent pulse leads to non-vanishing

ΔŜ
obs
z in contrast to a sub-Poisson Fock-state pulse.

Quantum statistics of the photon OAM. Heisenberg’s uncer-
tainty relation is the canonical quantum characteristics of angular
momentum. However, this relation for photon OAM has never
been addressed till date. Here, we present a quantitative investi-
gation about the quantum statistics of photon OAM. We discover
that for beams with large OAM number, there exist large fluc-
tuations for the OAM operators in the orthogonal directions i.e.
in the transverse plane. This quantum effect can be observed in
experiment even with traditional OAM laser beams. The mean

value of L̂
obs
z for a Fock-state twisted pulse with photon number n

is given by,

nξλ
	 �� L̂obsz nξλ

�� � ¼ � in_
2π

Z
d3kηλðkÞe�imφk

∂

∂φk

ηλðkÞeimφk

ð20Þ

Fig. 2 Profile of a Bessel pulse in wave-vector space and real space. a Schematic of the spectral distribution of a Bessel pulse. b The energy density (in
unit of _ωc=λ

3
c ) distribution of a Bessel pulse in the xy-plane. c The envelope of the Bessel pulse in the propagating direction is of a Gaussian type. Here, ωc

is the center frequency of the pulse with center wavelength λc. The polar angle of the Bessel pulse is taken as θc= 0.2π. The other parameters are taken as
m= 2 and C0= 100.
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¼ mn_: ð21Þ
This reduces to the well-known result obtained from the semi-
classical method that each twisted photon carries mℏ OAM23,24.

We see that hL̂obsz i is independent of the photon polarization. It is
only determined by the photon number n and integer m in the
helical phase factor expðimφkÞ if ηλ(k) is not a function of φk. We
can also verify that, in this case, the mean value of photon OAM

in xy-plane vanishes, i.e., hL̂obsx i ¼ hL̂obsy i ¼ 0 (please refer to
Supplementary Note 4).

The quantum variances of the three components of photon
OAM for a Fock-state Bessel pulse are given by

ðΔL̂obsz Þ
2

¼ nξλ
	 ��ðL̂obsz Þ

2
nξλ
�� � � nξλ

	 ��L̂obsz nξλ
�� �2 ¼ 0; ð22Þ

and

ðΔL̂obsx Þ
2
¼ ðΔL̂obsy Þ

2

¼ 1
2 n_

2 C2
0 þ 1

4


 �
x2 þ C2

0 þm2 þ 3
4


 �
1
x2 � 1

� 
ð23Þ

≥
1
2
n_2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4C2

0 þ 1Þ C2
0 þm2 þ 3

4

� �s
� 1

" #
� 1

2
mn_2; ð24Þ

where x ¼ tan θc 2 ð0;1Þ and we have used the inequality
relation a2x2+ b2/x2 ≥ 2∣ab∣ and the narrow-band condition
C0≫ 1. This immediately leads to the Heisenberg relationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔL̂obsx Þ
2
ðΔL̂obsy Þ

2
r

>
_

2
hL̂zi
�� �� ¼ 1

2
mn_2: ð25Þ

The other two Heisenberg relations for photon OAM are trivial

due to the vanishing mean values of L̂
obs
x and L̂

obs
y . Similar results

also hold for a coherent-state twisted pulse, but with non-

vanishing ðΔL̂obsz Þ
2
¼ _2�nm2.

Interesting works have been reported to demonstrate the
uncertainty relation between the conjugate variables of angle φ of
light and its derivative l̂z � �i_∂=∂φ in the first-quantization
picture52,53, i.e., ΔφθΔlz ≥ ℏ[1− 2πP(θ)]/2. In contrast, our focus
is the Heisenberg uncertainty corresponding to the canonical 3D
angular commutation relation of photons. On the other hand, we
note that for transverse EM fields, {Hamiltonian Ĥ, momentum
P̂, helicity Λ̂} has been select as the complete set of commuting
observables to specify a photon state usually. Here, we see that a
single-photon pulse carrying determinate integer OAM in the

propagating direction is not the eigen state of ðL̂obsÞ
2
.

Our predicted large OAM fluctuations in xy-plane can be
verified in experiments (see Fig. 3a). The quantum uncertainties

of L̂
obs
x and L̂

obs
y are linearly proportional to the photon number n

in a Bessel pulse as shown in Fig. 3b and proportional to the
square of the helical phase index m in Eq. (11) as shown in 3c.
From Eq. (23), we see that the OAM fluctuations in the transverse
plane are strongly dependent on the polar angle θc of a Bessel
pulse. There exists a minimum-uncertainty angle due to the
inequality a2x2+ b2/x2 ≥ 2∣ab∣ (x ¼ tan θc) in (24) as shown in
Fig. 3d. For a optical pulse, the ratio C0 between its center wave
number and its width is usually very large, e.g., C0 ≈ 188 for a 50
fs pulse with center wave length λc= 500 nm. In our numerical
simulation, we set C0= 100. We note that these large OAM
fluctuations in the transverse plane also exist in traditional OAM
laser beams, such as the routinely used Laguerre−Gaussian beams
in experiments.

Quantum spin texture of a single-photon pulse. We show that
the spin texture of a single-photon pulse can exhibit a very rich
and interesting structure in the case beyond the paraxial
approximation. The photon spin texture is characterized by the
spin density operator

ŝobsðr; tÞ ¼ ε0Ê?ðr; tÞ ´ Â?ðr; tÞ: ð26Þ
Similar to the electric or magnetic fields, the spin density can be
treated as a vector field and can be measured locally44. We
emphasize that as a vector, the spin density is neither purely
longitudinal or purely transverse in most cases. In the single-
mode plane-wave limit, the spin density will be a space-
independent constant, i.e., ∇ ´ ĥsobsðr; tÞi ¼ ∇ � ĥsobsðr; tÞi ¼ 0.

The mean value of the spin density of a Fock-state Bessel pulse
is given (please refer to Supplementary Note 5)

nξλ
	 ��̂sobsðr; tÞ nξλ�� � ¼ λ sφeφ þ szez

� �
; ð27Þ

where

sz ¼
n_C0

2πσzσ2ρ
Jm�λðk?;cρÞ
h i2

cos4
θc
2
� Jmþλðk?;cρÞ
h i2

sin4
θc
2

� �
exp � ct � z cos θc


 �2
2σ2zcos

2θc

" #
;

ð28Þ
and

sφ ¼ n_C0 sin θc
2πσzσ2ρ

cos2
θc
2
Jmðk?;cρÞJm�λðk?;cρÞ þ sin2

θc
2
Jmþλðk?;cρÞJmðk?;cρÞ

� �

exp � ct � z cos θc

 �2

2σ2zcos
2θc

" #
;

ð29Þ

with r= ρeρ+ zez. The spin density of a coherent pulse can be
evaluated similarly. Here, we can see the following key characters
of the spin density: (i) its projection in the xy-plane is symmetric
around z-axis. This causes the corresponding spatial integral to

vanish as shown in the previous section, i.e., hŜobsx i ¼ hŜobsy i ¼ 0;
(ii) its xy-plane projection is parallel or anti-parallel to the
azimuth-angle-dependent unit vector eφ and it does not have a
radial component. This leads to the helical spin texture as shown
in Fig. 4; (iii) its xy-plane projection contains the product of two
different Bessel functions. The sign of a Bessel functions flips
when crossing its zeros. This leads to the oscillation between
clockwise and anti-clockwise structures in the spin texture; (iv) its
projection on z is independent on φ. For a small angle θc, the term
�cos4ðθc=2Þ dominates. Thus, the sign of sz is always positive
(negative) for LCP (RCP) pulse. This leads to the non-vanishing
global spin hŜM;zi.

We show the spin texture of an LCP single-photon (n= 1)
Fock-state Bessel pulse in Fig. 4. Here, we only look at the spin
density vector field on the plane kz,cz= ct, at which the Gaussian
functions in Eqs. (28) and (29) reach their maxima. In this case,
the space-dependent spin density is only a function of the radius
ρ and the azimuthal angle φ contained in eφ. For a pulse with
small polar angle θc= 0.1π, almost only a clockwise structure can
be observed in panel a. However, for a pulse with a larger polar
angle θc= 0.2π, the oscillation between clockwise and counter-
clockwise structure can be observed clearly. This oscillation can
only be obtained beyond the scalar-field theory and the paraxial
approximation. For higher-order Bessel pulses with m > 0, the
fine structure of the spin density is significantly different from the
m= 0 case. The innermost ring changes from clockwise to
counter-clockwise as shown in panels c and d. We also note that
the Bessel pulse with m= 1 is very special (see panel c), because
the spin texture has a peak instead of a hole at the center.

In Fig. 5, we show more details of the projection of the spin
density vector field on xy-plane and z-axis, respectively. In panel
a, we look at the projection of the spin density on xy-plane sφeφ
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Fig. 3 Photonic orbital angular momentum (OAM) fluctuation in the transverse plane. a OAM measurements in the direction orthogonal to the
propagating z-axis. A Bessel pulse has vanishing mean OAM in xy-plane but non-zero OAM fluctuations, ðΔL̂obsx Þ

2
¼ ðΔL̂obsy Þ

2
() 0. b The quantum

uncertainty of L̂
obs
x is linearly proportional to the photon number n in the pulse. Different lines correspond to different helical phase index m. c The quantum

uncertainty of L̂
obs
x is proportional to the square of m. d The OAM fluctuation in xy-plane is strongly dependent on the polar angle θc of a Bessel pulse. The

ratio C0 has been taken as 100 in all simulations.

Fig. 4 Helical spin texture of twisted quantum pulse. Spin texture of a single-photon left-circular-polarized Bessel pulse on the pulse-center plane with
kz,cz= ct. a−d Correspond to different quantum numbers m and polar angles θc. The colorbar describes the amplitude of spin density in unit of _=λ3c .
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with fixed Bessel order index as m= 0 and the azimuthal angle as
φ= 0 (i.e., along the x-axis). For a pulse with small θc (see the
blue arrows at the bottom), sφeφ is relatively small and flat. The
amplitude of sφ decreases with θc and it vanishes when θc→ 0.
For a pulse with larger θc (see the yellow arrows at the top), the
sign of sφ oscillates between ±1 with increasing ρ. This explains
the oscillation between the clockwise and counter-clockwise
structures shown in Fig. 4b. In panel b, we show the rotation of
sφeφ in xy-plane with fixed m= 0 and θc= 0.2π. In panel c, we
show the projection of the spin density on z-axis as the function
of ρ for the four cases in Fig. 4. Here, we clearly see the oscillation
induced by the Bessel function in Eq. (28). Specifically, the vertex
at the center for m= 1.

Nonlocal spin noise of light. To characterize the nonlocal spin
noise of light, we introduce the quantum correlation function of
the photon spin density. Due to the vector nature of the spin
density, the full two-point correlation should be characterized by
a 3 × 3 correlation matrix as shown in the Supplementary Note 6.
Here, we only describe the equal-time correlator
ŝobsz ðr; tÞ̂sobsz ðr0; tÞ	 �

.
In the paraxial limit (θc ≈ 0), the two-point correlation

functions for a Fock-state and a coherent-state pulse are given
by (please refer to Supplementary Note 6)

nξλ
	 ��̂sobsz ðr; tÞ̂sobsz ðr0; tÞ nξλ

�� � � _2 δðr � r0Þn ψ�λðr; tÞ
�� ��2h

þ nðn� 1Þ ψ�λðr; tÞ
�� ��2 ψ�λðr0; tÞ

�� ��2i; ð30Þ

and

αξλ
	 ��̂sobsz ðr; tÞ̂sobsz ðr0; tÞ αξλ

�� � � _2 δðr � r0Þ�n ψ�λðr; tÞ
�� ��2h

þ �n2 ψ�λðr; tÞ
�� ��2 ψ�λðr0; tÞ

�� ��2i; ð31Þ

where

ψλðr; tÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p Z
d3kξλðkÞei½ðk�r�ωtÞþλφk�; ð32Þ

is the effective wave function of a pulse in real space. This method
can be easily generalized to higher-order correlations.

We note that the delta function δðr � r0Þ in the correlation
function will not lead to any diverging effect, because a practical
probe always measures the averaged photon spin density over a
finite volume instead of the true single-point spin density. On the
other hand, this term vanishes in a composite measurement with
r 6¼ r0. In this case, we see that the Poisson and sub-Poisson
statistics automatically enter the quantum spin-density correla-
tions. Specifically, the two-point spin density correlation vanishes
for a single-photon Fock-state pulse as expected.

We now propose to detect the non-local spin density
correlation via compound measurements of two NV centers,
which have been exploited as nano-scale quantum sensors for
photonic spin density measurements recently44. As shown in
Fig. 6a, we fixed one quantum sensor on the z-axis and move the
other one to image the distribution of the spin density correlation
in the transverse plane. We contrast the spin density correlations
in Fock-state and coherent-state Bessel pules in Fig. 6b−d. Here,
we see that in the few-photon limit, there exist significant
differences between Fock-state and coherent pulses. This
difference fundamentally roots in the quantum statistics of
photons and it will disappear in the large-photon limit.

The electronic ground-state of a negatively charged NV center
is a spin-1 system, which has been routinely used as a highly
sensitive nano-scale magnetometer at room temperature54. A
laser with wavelength shorter than 637 nm is required to excite
the NV to its electronic excited states. A red circularly polarized
laser pulse (target pulse) with wavelength around 800 nm will not
excite the NV, but only induce energy shifts in the three ground
spin states. Recent work has shown that these energy shifts
function as a static magnetic field for the NV spin44, which is
linearly proportional to the local spin density of the target beam,
i.e., Beff / ĥsobsðrÞi. Thus, an NV center can be exploited as a
nano-scale photonic spin sensor.

Currently, imaging of single-photon level spin density and the
corresponding correlation is extremely challenging in experi-
ments. However, our discovered interesting texture of spin
density and non-local spin noise also exists in traditional OAM
beam, which can be demonstrated in the near future. On the
other hand, due to the absence of photon-photon interaction, the
nonlocal spin noise within a light pulse in free space is fully
determined by the photon-number statistics. However, we predict
that exotic photonic phases with long-range spin order can exist
in a quantum polariton system or an atomic lattice55,56.

Conclusion
We have established the fully quantum framework for photonic
angular momenta of quantum structured pulses, as well as the
corresponding quantum texture. Our approach presents a para-
digm shift for the photonics community as it can be exploited to
study the quantum properties and to reveal the vector nature of
the angular momentum of light. We have shown that the spin
texture of a Bessel pulse can exhibit a very interesting structure
beyond the paraxial limit. Our proposed non-local spin noise will
open a frontier for studying exotic phases of photons with long-
range spin order. This spin noise can be measured in compound
measurements with multiple nano-scale spin sensors, which have
been proposed and demonstrated in our previous experiment44.
The photonic OAM density and the corresponding non-local

Fig. 5 Details about the spin density vector. Projections of the spin density of a Bessel single-photon pulse on xy-plane (panel a, b) and on z-axis in panel
(c). Panel a corresponds to the case with fixed azimuthal angle ϕ= 0, but different polar angle θc. Panel b corresponds to the case with fixed polar angle
θc= 0.2π, but different azimuthal angle ϕ= {0, π/3, 2π/3, π, 4π/3, 5π/3}. Panel c shows the z-component of the spin density.
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OAM density noise can also be handled within our proposed
theoretical framework, which will be addressed in our
future work.

Data availability
The data that support this study are available at https://github.com/yanglp091/
PhontonicSpinTexture.

Code availability
The code that supports this study is available at https://github.com/yanglp091/
PhontonicSpinTexture
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